Il Super Compensatore

Durante la messa a punto di un’amplificatore valvolare capita spesso di dover stabilire empiricamente il valore del condensatore di compensazione, ossia quel condensatore che si trova quasi sempre in parallelo con la resistenza di negative feedback. Il valore di questo condensatore non può essere calcolata sulla carta perchè il suo valore dipende dalle caratteristiche parassite del trasformatore di uscita e dagli accoppiamenti parassiti che si sono creati nel cablaggio del circuito che è praticamente impossibile stabilire a priori e può variare a seconda del montaggio. Anche rimontando lo stesso schema elettrico con una disposizione diversa dei vari componenti si modificano e spesso ci si trova a dover variare il valore di questo componente. Lo stesso discorso vale per eventuali piccole capacità di fuga che a volte è necessario inserire in alcuni punti di un circuito per sopprimere instabilità e oscillazioni spontanee.

Ci tengo infatti a dire che la maggiorparte degli hobbysti auto construttori non condensidera affatto questo aspetto della costruzione di un’elettronica, quasi tutti infatti sono convinti che se viene rispettato lo schema elettrico allora il circuito funzionerà sempre alla stessa maniera, quasi nessuno comprende che a volte alcuni punti di uno schema possano essere legati ad aspetti “meccanici” o al trasformatore d’uscita utilizzato e andando a replicare fedelmente uno schema senza comprendere che magari un piccolo snubber inserito sulla placca di una valvola, che nella versione originale era messo a prevenzione magari di un piccolo innesco nel loro montaggio potrebbe trasformarsi nella causa di tutti i problemi di stabilità oppure potrebbe non servire a niente. L’auto costruttore spesso non ha nemmeno un’oscilloscopio e non riesce a capire se il circuito che ha montato funziona bene o magari sta sblatterando sopra Radio Maria per 2 km di raggio attorno casa sua, l’hobbysta spesso giudica solamente con l’orecchia che ovviamente non capta onde radio. Alla luce di questo aspetto non sorprende quindi che spesso i circuiti osannati come migliori dalla stragrande maggioranza di loro siano circuiti molto semplici e privi di negative feedback.

Chiusa questa parentesi presento un piccolo e semplice accrocchio che ho realizzato per velocizzare le prove a banco la cui idea potrebbe tornare utile a tutti coloro abbiano la capacità tecnica per capire le problematiche di messa a punto di un circuito: Un condensatore variabile a copertura quasi continua da 50pico fino a quasi 12nF. Solitamente le prove di eseguono collegando un condensatore nel circuito di valore stabilito arbitrariamente e poi andando ad aggiustare il tiro, diminuendo o aumentando il valore di questo condensatore finchè non si ottiene il risultato migliore, operazione che risulta spesso noisa perchè è necessario spegnere l’apparecchio ogni volta per agire col il saldatore e cambiare il condensatore provvisorio, sciupando a volte anche i componenti usati per le prove. Il “Super compensatore” invece può essere connesso provvisoriamente al circuito e poi agendo su 2 manopole si varia la sua capacità durante il funzionamento del circuito stesso finchè non si trova la regolazione desiderata, quindi lo si disconnette  e al suo posto si inserisce a botta sicura un condensatore fisso del valore più vicino a quello trovato con lo strumento.

Il cuore del Super Compensatore è un condensatore variabile in aria recuperato da una radio d’epoca demolita, si trovano facilmente su internet e sulle bancarelle dei mercatini, le 2 sezioni di questo condensatore connesse in parallelo arrivano a un massimo di 750pF, ma ce ne sono anche che possono arrivare fino a 1000pF. È molto importante che detto condensatore sia pulito e verificare che non abbia lamelle in corto, io ho eseguito un test con il mio tester di isolamento su diversi condensatori che avevo in uno scatolone e purtroppo non tutti reggono tensioni elevate, alcuni scaricano tra le lamelle già a un centinaio di volt e verificare questa cosa è molto importante perchè se lo si connette a una placca di un driver piuttosto che su una linea di NFB a bassa tensione c’è il rischio che causare dei corti. Quello che ho scelto aveva un’isolamento fino a 1500volt, e l’ho reputato buono. In realtà all’inizio scaricava già attorno gli 800volt, ma dopo averlo lavato per bene con sgrassatore per rimuovere polvere unto e sporco di ogni tipo, soffiato con il compressore, rilavato con isopropilico e averlo fatto asciugare per bene un paio di giorni è migliorato fino a 1500volt. Non fatevi indurre nell’errore poi di prendere un variabile con le lamelle più spaziate, ne avevo uno bello grosso a 4 sezioni che arrivava a 2000pico ma era tra i peggiori, non so dire esattamente il perchè (magari se lo avessi pulito sarebbe andato, ma era troppo ingombrante e l’ho scartato) in tutti i modi è bene verificarlo con uno strumento.

Affiancato a questo condensatore variabile ho poi montato un commutatore a 12 posizioni per porre in parallelo al variabile per 11 dei passi altrettanti condensatori fissi con questa cadenza:

  1. Nessun condensatore, c’è solo quello variabile
  2. 750 pico
  3. 1500 pF
  4. 2200 pF
  5. 3300 pF
  6. 3900 pF
  7. 4700 pF
  8. 5600 pF
  9. 6800 pF
  10. 8200 pF
  11. 10 nF
  12. 15 nF

Ecco lo schema che è semplicissimo

Tutti i condensatori montati devono essere da minimo 400volt, non importa che siano poliestere o ceramici. Ho montato tutto in una scatolina di plastica realizzate con la stampante 3D con un doppino uscente lasciato con i terminali a saldare pronto per essere connesso al circuito in prova.

Ho misurato fisicamente la capacità del condensatore in tutte le 12 posizione per apporre un’etichetta sopra di esso che riporta il passo di capacità minimo e massimo (CV aperto e CV Chiuso) di ogni posizione e ho terminato la costruzione dello strumento. Nel video sotto mostro il super compensatore durante l’uso nella messa a punto di un’amplificatore…

Continue reading...

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Boyuu A20 – Upgrade

Sottotitolo: Spieghiamo perchè gli upgrade “facili” sono spesso una perdita di tempo e di soldi.

Dopo aver parlato dell’upgrade del Boyuu A9 un cliente mi contatta per avere informazioni riguardo l’upgrade del Boyuu A20…

Mi ha mandato alcune foto dicendomi che l’aveva già upgradato e voleva migliorarlo ancora…

Quindi prendo la palla al balzo per spiegare una volta per tutte che se un’amplificatore è di progettazione dozzinale e ha trasformatori di scarsa qualità, cose che ci si aspetta normalmente in un’apparecchio cinese a basso costo, è una inutile perdita di tempo e di soldi fare questi upgrade facili che consistono nel montare valvole più belle e condensatori grifati, si avrà un leggero cambio di intonazione ma si sarà sempre poco lontani dall’oggetto di partenza, le parti salienti di un’amplificatore sono i trasformatori e lo schema elettrico, se si vuole veramente ottenere un miglioramento che valga la spesa è li che ci si deve concentrare. In ogni modo di questo amplificatore non si trovava uno schema corretto su internet, infatti facendo ricerche appaiono schemi che usano la 6SL7 con i triodi in parallelo, schema del tutto uguale a quello del modello A9 con le EL34, ma questo apparecchio monta dei pentodi 6SJ7 sull’ingresso, ci sono 2 induttanze sull’alimentazione invece che una sola, in pratica non sapedo com’era l’oggetto di partenza non sapevo indicare modifiche, quindi me lo sono fatto spedire per estrapolare lo schema elettrico che riporto qui sotto (nota i valori dei condensatori riportati sono quelli che ho trovato dopo la modifica fatta dal proprietario e non so se siano degli stessi valori esatti di quelli di partenza).

Lo schema è il classico single ended ultralineare, tanto di moda quanto concettualmente sbagliato. Le KT88 lavorano a 21watt di dissipazione (meno del limite di una EL34) con circa 380/370volt in placca su un trasformatore da 3500ohm primari, la 6sj7 è polarizzata in modo normalissimo, mentre la sezione di alimentazione reca una sorpresa (di cui non mi meraviglio), ci sono 2 induttanze di filtro e si era convinti che avessero biforcato al primo condensatore dopo la raddrizzatrice per fare una cella LC separata per ogni canale, tra l’altro in foto si vedono chiaramente le 2 induttanze una a destra e una a sinistra e 2 grossi condensatori sempre uno a destra e uno a sinistra ma ovviamente non è così: le 2 induttanze sono poste in serie e i 2 condensatori sono posti in parallelo da una pista sul PCB. E come pillola finale facendo 2 conti la valvola 5U4 patisce il picco di carica ad ogni accensione dei 2 condensatori da 220uF in parallelo. Cosa c’è di peggio dei circuiti al risparmio? I circuiti che avrebbero tutti i pezzi ma sono stati usati nel modo sbagliato. Vediamo strumentalmente cosa usciva da questo boyuu A20 già parzialmente modificato…

Banda passare un pò meno di 20Hz e 13khz @ -1dB, rotazioni di fase guardatevi il grafico

La potenza massima sembra 15 watt RMS per canale, in realtà anche se non subentra il clipping la distorsione è tanta a 15 watt, la distorsione a 1 watt è già al 2,35%…

Vediamo una triangolare a 15 watt, questa orrenda distorsione è per la maggiore causata dall’ultralineare che non è adatto all’uso negli SE…

Lo smorzamento è ovviamente basso, attorno un fattore 2 essendo il circuito privo di controreazione, sul carico reattivo mostra tutte le sue limitazioni.

Questo insegna che il più bel condensatore e la più costosa valvola NOS non possono correggere le limitazioni intrinseche di un circuito e di un trasformatore d’uscita. Tutto questo però è molto didattico. Visto il circuito ho considerato che non è possibile sfruttare la KT88 al pieno delle sue potenzialità. Per essere sfruttata a pieno, in single ended, una KT88 andrebbe fatta lavorare su un’impedenza primaria di 6k, dovrebbe vedere in placca almeno 420/430volt e portata a ridosso dei 35 watt di dissipazione, in questo apparecchio però non è presente abbastanza tensione… o magari la si potrebbe raggiungere eliminando la valvola raddrizzatrice e rettificando con dei diodi, cosa che non voglio proporre perchè resterebbe un buco vuoto e in ogni modo i miei trasformatori 6K per KT88 sono troppo grossi e non ci stanno nello spazio a disposizione, quindi alla fine ho deciso di restare su un’impedenza di 3500ohm con 380/370volt di placca (sottratti i 34 che cadono sulla RK rimangono circa 350 a disposizione della valvola) portando la dissipazione della valvola attorno i 30 watt con una corrente complessiva sopportabile dalla raddrizzatrice, ovviamente ho ridimensionato i condensatori per restare nei limiti della 5U4. Va eliminata una delle 2 induttanze perchè hanno una RDC di 80ohm cadauna (in serie 160ohm) e causerebbero troppa caduta di tensione visto il maggiore carico di corrente. La kt88 viene fatta lavorare a pentodo puro e ovviamente ho aggiunto un’anello di NFB per aumentare il tasso di smorzamento dell’apparecchio e tenere bassa la distorsione. A parte queste cose il disegno non è troppo diverso dall’originale e si può cablare senza modifiche troppo invasive. Lo schema premium è qui sotto, visibile in chiaro solamente a chi acquisterà i trasformatori.

Risultati dell’upgrade

Ho realizzato dei trasformatori d’uscita da 3500ohm dedicati all’upgrade di questo amplificatore e uno schema premium. Vediamo cosa si riesce ad ottenere. Come detto in precedenza l’amplificatore originale arrivava ad erogare 15 watt su 8ohm (30Vpp su 8ohm) ma con tassi di distorsione imbarazzanti e un fattore di smorzamento all’incirca di un fattore 2. La potenza ora è di circa 10Watt (25Volt su 8ohm), lo smorzamento è passato da un fattore 2 ad un fattore 8. La banda passante è passata da “20Hz / 13khz @ -1dB” a “10Hz -0,2dB / 70khz -1dB”. La distorsione a 1watt è passata dal 2,35% a un 0,46%. Vediamo i grafici a confronto…

Banda passante: Prima Dopo
Risposta su carico reattivo: Prima Dopo
THD: Prima Dopo
Onda Triangolare alla massima potenza prima del clipping: Prima Dopo

Vediamo anche le quadre, nei grafici è presente un pò di ringing residuo, non ho esagerato con la compensazione per non limitare la banda passate e il declino della fase, il ringing appariva comunque solo su carico resistivo scomparendo del tutto quando c’era il carico reattivo, o un’altoparlante connesso… o nulla connesso (ovviamente il circuito è stabile anche in assenza di carico).

Quadre a 100Hz / 1khz / 10khz

In definitiva questa modifica è abbastanza semplice da mettere in atto rispetto quella sull’A9, il risultato strumentale è ottimo e anche la resa sonora diventa di tutto rispetto e al pari di apparecchi ben più costosi.

Continue reading...

2 Responses to Boyuu A20 – Upgrade

  • Dovrebbe essere spiegato nell’articolo relativo. L’nfb non abbassa l’impedenza ma la resistenza d’uscita (che poi è la stessa cosa del DF espresso in modo diverso), semplicemente perchè tu hai questa resistenza immaginaria posta in serie al carico che causa una caduta di tensione calcolabile secondo la legge di ohm. La controreazione sente questa caduta e agisce sul circuito in modo da diminuirla e di fatto diminuisce la Rout. Il fenomeno lo si capisce bene nelle misure della banda passante su carico reattivo: ignorando il comportamento sulla fase, il carico rattivo lo puoi immaginare come una resistenza che varia di valore al variare della frequenza, quindi tanto più la rout dell’amplificatore è alta tanto più sono ampi i salti che emergono durante la misura.

  • Ma qual’è il motivo per il quale con la controreazione si abbassa l’impedenza di uscita dell’ampli (e di conseguenza si alza il fattore di smorzamento?

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Luxman MQ70 – Riparazione

Un difetto tipico dei Luxman MQ70 sono i trasformatori d’uscita che vanno in corto, sopratutto se per errore vengono accesi e fatti suonare sconnessi dall’altoparlante, problema favorito per altro dai morsetti in dotazione che se si inserisce troppo dentro la guaina del filo a volte non fanno contatto. Il secondo difetto dei trasformatori d’uscita Luxman è di essere affogati in catrame. Il catrame è fortemente igroscopico (cioè assorbe amidità col tempo e tende a trattenerla) e se l’amplificatore viene conservato per lungo tempo in un luogo umido è possibile che i trasformatori si rovinino.

Un’altro problema dell’MQ70 è quello delle finali tirate per il collo: Riescono ad erogare 40watt RMS da una sola coppia di EL34, perchè la tensione anodica arriva a sfiorare i 500volt e a volte arrossano le placche perchè non si riesce ad abbassare la corrente di bias sotto i 50mA (o più di 50). Nella regolazione del bias si ha un leggero margine se la tensione di rete è 220 (testato col variac, il trasformatore di alimentazione dell’MQ70 è fatto per ricevere sul primario 220volt) il problema è che ai giorni nostri spesso la rete di distribuzione arriva a 230/240volt e l’aumento della tensione di placca delle finali fa schizzare la corrente di bias oltre il limite minimo regolabile dal circuito, questo secondo difetto è facilmente risolvibile cambiando una sola resistenza nel circuito, in questo modo si aumenta la tensione negativa disponibile sui trimmer del bias e si riesce a riavere un buon margine di regolazione. Consiglio a tutti di regolare una corrente di riposo di 30/35mA massimi, per tenere le finali un pelo al di sotto della dissipazione massima, non si ha nessuna perdita di potenza o qualità, le valvole vivono più a lungo e sono meno soggette a guasti esplosivi. PS in molti apparecchi la luxman sembra non aver montato le resistenze di testpoint riportate a schema sotto gli zoccoli delle finali, per comodità di non dover usare 4 bias prober io le metto.

Primo Caso: Riparazione di un esemplare con riavvolgimento dei trasformatori originali.

Mentre il primo difetto, ossia i trasformatori d’uscita che si bruciano è più antipatico. La disconnessioni del diffusore avviene principalmente per colpa le boccole a vite dove si mette il filo spellato che va alla cassa, queste boccole di plastica le trovo spesso rotte, quindi mollano il filo, il guasto del trasformatore avviene per auto oscillazione, perchè il circuito ha un tasso di feedback estremamente alto.

Il lavoro di ripristino del trasformatore di uscita è molto laborioso, perchè detto trasformatore è chiuso in una scatola metallica, affogato nel catrame e usa lamierini con dimensioni non standard, quindi non posso produrre semplicemente il ricambio ma devo ogni volta estrarre il blocco dal catrame e ripulirlo per recuperare lamierini e fascetta per poterlo riavvolgere.

Estrazione…

Trasformatore ripulito

Trasformatore riavvolto

Reinserimento nella scatola originale e riaffogato.

Rimontato il trasformatore riparato, provvedo a sostituire i morsetti a vite scassati con delle boccole adatte all’uso di capocorda, gli unici connettori con cui viene un bel lavoro.

Sistemato il problema del bias e cambianto il quartetto di EL34 (valvole che di solito trovo totalmente sfiaccate) l’amplificatore torna a funzionare come nuovo. Per gli scettici pubblico i 2 tracciati di banda passante e fase acquisiti dal canale con il trasformatore d’uscita ancora originale e quello riavvolto e faccio presente che il trasformatore viene riavvolto sugli stessi lamierini originali, con gli stessi materiali e con esattamente lo stesso schema di avvolgimento ottenuto per ingegneria inversa, sbobinando il primo che ho rifatto. Quindi la copia è uguale all’originale. Le minime differenze le si trova anche su coppie di trasformatori originali, il clone è perfetto.

Trasformatore Originale Trasformatore Riavvolto

Analizzando più a fondo i trasformatori originali Luxman, acquisendo il grafico di banda passante fino a 400khz si nota l’insorgere di una fortissima risonanza che viene probabilmente accentuata dall’immenso tasso di controreazione che viene applicato a questo circuito e che è sicuramente la causa della distruzione degli stessi trasformatori, con guasto delle finali, quando all’amplificatore manca il carico, ovviamente il trasformatore riavvolto ha lo stesso difetto. Non ho acquisito il grafico oltre i 400khz per motivi di sicurezza, non volevo guastare il trasformatore sotto test visto che a 400khz la risposta era già a +15dB. Faccio poi notare ai soliti personaggi pieni di pregiudizi che a orecchia non si nota nessuna differenza sonora tra i 2 trasformatori anche se uno è originale e l’altro è stato riavvolto, le differenze nei grafici sono insignificanti e non è possibile udire la differenza di 0,4dB a 10Hz in quanto si è nella gamma degli infrasuoni. La risposta in fase è la medesima e piccole differenze come questa le rileveresti anche tra 2 trasformatori originali, non importa avere belle casse, a orecchia non lo si sente. (E anche io ho delle Tannoy). Quindi chi ha pregiudizi e sentenzia che i miei lavori sono qualitativamente inferiori agli originali prima di parlare dovrebbe ascoltarli perchè scommetto che se non sapesse che c’è un trasformatore riparato non sentirebbe nulla di strano.


Secondo Caso: Riparazione più economica (ma migliorativa)

Questo è il caso di un MQ70 che mi è stato inviato da un negozio, l’amplificatore all’apertura del pacco emanava una puzza nauseabonda, un misto tra urina ed elettronica bruciata, all’ispezione visiva si presentava con simil granelli di sale cosparsi ovunque, io credo che sia stato tenuto appoggiato in terra in una cantina umidissima o che la detta cantina abbia subito un’allagamento, e che poi abbiamo provato a metterlo in funzione. Già un’altro tecnico aveva provato a ripararlo senza successo, quindi lo hanno inviato a me. Nelle foto sotto si possono vedere le incrostazioni da umidità che lo ricoprivano.

Vista la sporcizia e la puzza che faceva non c’erano molte alternative, ho dovuto smontare tutti i trasformatori e l’induttanza per procedere ad un lavaggio del telaio, nello smontare i trasformatori d’uscita ho trovato abbondante condensa sotto di essi (si vede bene nella foto ravvicinata):

Ho quindi fatto un test di isolamento sui trasformatori d’uscita ed emergeva che scaricavano tra primario e secondario superati i 700volt, quando in teoria la tenuta dovrebbe arrivare almeno a 2kV, segno che avevano assorbito umidità. Inizialmente ho provato a tenerli una settimana sul termosifone nella speranza che asciugassero ma la situazione non cambiava, inoltre c’era la seria possibilità che visto che l’amplificatore era stato acceso, internamente avessero già una bruciatura conduttiva tra gli isolanti. Non c’era speranza di recuperarli e siccome il riavvolgimento degli stessi originali come avete visto nella prima parte di questo articolo è veramente molto laboriosa e costosa il negoziante che me lo ha inviato per la riparazione mi ha chiesto quale poteva essere il piano B per non sforare il budget. Il piano B è quello di avvolgere 2 trasformatori di ricambio, ex novo, compatibili al circuito ma ovviamente non esteticamente uguali agli originali. Essendo il trasformatore originale avvolto su un nucleo con dimensioni non standard non è possibile usare lo stesso schema di avvolgimento, ma bisogna calcolare un trasformatore completamente nuovo, ero fiducioso di riuscire a fare un lavoro anche migliore dell’originale, inoltre non dovendo rinchiudere i trasformatori in una scatola avrei avuto a disposizione almeno il 30% in più di nucleo. Il piano B è stato confermato quindi sono andato avanti nel lavoro di riparazione, nella foto sotto il telaio bello pulito e profumato.

Ho dovuto fare qualche foro per ospitare i nuovi trasformatori d’uscita…

Il montaggio è andato bene, anche in questo esemplare bisogna aggiungere le resistenze da 10ohm che appaiono sullo schema ufficiale per poter regolare il bias…

Montaggio Finito…

Ho regolato il bias a 35mA per valvola e sorprendentemente la potenza RMS è aumentata dai 40Watt per canale che si hanno con i trasformatori originali a 56watt RMS, con i miei trasformatori il circuito appare stabile e non si mette ad auto oscillare in mancanza del carico. Il fattore di smorzamendo DF si attesta a 13… sono sincero è troppo retroazionato questo circuito, mi sono permesso di ritoccare il valore della resistenza di NFB per scendere ad un fattore di 8.

La banda passante 6watt è: 10hz 0dB @ 0,4° / 55khz -1dB @ 60° – banda passate e rotazione imposta più che altro dalla compensazione della rete di NFB, il trasformatore si estende quasi a 100khz. Il grafico poi è molto più pulito rispetto al grafico del trasformatore originale.

Distorsione armonica THD @ 1 watt su carico resistivo 0,17%

È impressionante invece il grafico su carico reattivo, frutto di un gran lavoro della luxman ma anche della tanta controreazione, resta comunque un’amplificatore valvolare concepito negli anni 80, in concorrenza con il mercato fiorente degli amplificatori a transistor di quell’epoca che puntavano tutto sulla strumentale. Sotto il grafico di risposta su carico reattivo a 6 watt.

Quadre a 100Hz / 1khz / 10khz

Ho ascoltato l’amplificatore è il suono resta quello luxman, non ho notato cambiamenti particolari, sopratutto in vece a recenti informazioni ricevute da persone a me vicine faccio notare ai puristi e collezionisti, ok i trasformatori in questo caso non sono più i suoi, se cercate un’apparecchio originale a scopo di collezionismo non è questo quello che fa al caso vostro, ma non potete dire che suoni peggio, in questo caso si diverso, più pulito e brillante quindi a detta di chi lo sta usando meglio che con i suoi originali e chi non lo ha sentito non può sentenziare un bel niente, le prove strumentali sono per altro evidenti. Inoltre ribadisco ancora, era un’apparecchio guasto che ora suona e fa felice qualcuno, diversamente sarebbe stato utilizzabile solo come rottame per recuperare parti di ricambio.

Continue reading...

5 Responses to Luxman MQ70 – Riparazione

  • Ho fatto riparare uno splendido MQ70 che bruciava le valvole di potenza e aveva un suono distorto. Il lavoro eseguito è stato perfetto. L’amplificatore ora è tornato ai suoi antichi splendori.

  • Ho riavuto pochi giorni fa il mio Luxman MQ 70, riparato dal Sig. Stefano.
    Trasformatori sostituiti ed altre cose sistemate.
    Il suono, simile a prima, ovviamente non è uguale, ma qui le sorprese: la prima gli acuti: più aperti senza essere fastidiosi.
    Ma è soprattutto la scena riprodotta a migliorare: più precisa, con strumenti maggiormente identificabili nello spazio e “fermi”.
    Meritava la riparazione insomma. Un grazie anche per l’assistenza ricevuta una volta restituitomi il finale

  • devo fare i complimenti al Sig Stefano. per competenza qulita del lavoro svolto e comunicazione.. un guro delle valvole conosce a fondo il tema, si percepisce perfettamente la passione per il suo lavoro…
    pieffe elettronica

  • La resistenza da 10ohm 1/4watt che sta come test point del bias fa lo stessa lavoro, se una valvola dovesse dar di matto si brucia la resistenzina. La cosa strana è che questa resistenza è riportata negli schemi ufficiali ma solo una volta le ho trovate montate di fabbrica (grosse per altro, che non bruciavano facilmente). In ogni modo quando non ci sono le aggiungo io.

  • Forse aggiungere un fuse adatto sul primario può prevenire la bruciatura del trasformatore d’uscita

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.