Amplificatori Single Ended e Connessione Ultralineare

Da un po’ di tempo ho notato una cosa che mi ero ripromesso di affrontare prima o poi. Sempre più spesso, ricevo domande e richieste di consigli riguardo a circuiti e schemi che le persone trovano su Internet e vorrebbero realizzare. In più di un’occasione mi sono trovato a dire loro: “Dimentica questa idea, o vai con un’uscita a triodo o a pentodo, perché la connessione ultralineare in amplificatori single-ended semplicemente non funziona.”

Quando affermo che un amplificatore ‘non funziona’ con la connessione ultralineare in un circuito single-ended, non intendo dire che lo accenderete e sentirete un esplosione o che non produrrà suono, o che il suono sarà così distorto da risultare inascoltabile. Invece, sto sottolineando che si è scelto un circuito concettualmente inadatto che, sebbene produca suono, lo fa in modo subottimale e senza apportare vantaggi significativi o addirittura causando altri problemi. Pertanto, è di fondamentale importanza dedicare tempo a leggere attentamente le mie osservazioni, comprenderle appieno e evitare di lasciare commenti che dimostrano la non comprensione del mio pensiero.

Le persone rimangono perplesse di fronte a queste mie risposte, tanto che ho ancora in catalogo trasformatori per amplificatori single-ended con presa UL, ma ne sconsiglio l’utilizzo. Questo è dovuto anche al fatto che, a un certo punto, devo pur vendere, e se i clienti non li acquistano da me, li acquistano altrove. È incredibile come si tratti di un errore clamoroso che è stato condiviso ed emulato praticamente da tutto il mondo audiofilo, compresi grandi marchi, senza che nessuno se ne sia mai accorto. La comunità degli appassionati di autocostruzione e degli audiofili è convinta che la connessione ultralineare sia una soluzione valida sia per gli amplificatori push-pull che per quelli single-ended, e nessuno sembra preoccuparsi di verificare effettivamente il funzionamento di questa configurazione. Forse è il nome stesso, “Ultra Lineare” che suona così rassicurante… non è solo lineare, è ULTRA! (Questo è un rafforzativo letterario e psicologico, ma non di fatto.)

Cos’è la connessione Ultra Lineare

La connessione ultralineare è una particolare configurazione ottenibile solo con i pentodi, in cui la griglia schermo viene collegata ad una presa intermedia del trasformatore di uscita. Questo collegamento fa sì che la tensione della griglia schermo sia variabile e segua il valore della tensione di placca. Il risultato è un rendimento elevato e un comportamento che rappresenta una via di mezzo tra quello di un pentodo classico e quello di un triodo. Questa innovativa configurazione è stata concepita da Alan Blumlein e mirava a sfruttare il meglio delle caratteristiche di entrambe le tipologie di valvole, triodo e pentodo. È una configurazione che può essere adottata sia per un finale push-pull al fine di massimizzare le potenzialità delle valvole.

Vantaggi della connessione ultralineare

Attraverso una scelta oculata della percentuale di derivazione della griglia schermo, è possibile sfruttare i vantaggi sia delle valvole triodo che delle valvole pentodo. In una gamma molto ristretta di valori di percentuale di derivazione, si è riscontrato che la distorsione diminuisce a valori insolitamente bassi, talvolta inferiori sia all’operazione a triodo che a pentodo, mentre l’efficienza energetica subisce solo una lieve riduzione rispetto all’operazione in pentodo completo. La percentuale di derivazione ottimale per ottenere un funzionamento ultralineare dipende principalmente dal tipo di valvola utilizzato; un valore comunemente osservato è il 43% (rispetto al numero di spire primarie del trasformatore sul circuito dell’anodo), che si applica alla KT88, anche se molte altre tipologie di valvole hanno valori ottimali vicini a questo. Un valore del 20% è stato raccomandato per le 6V6GT. Circuiti Mullard utilizzavano anche il 20% di carico distribuito, mentre gli amplificatori LEAK utilizzavano il 50%. Le caratteristiche del circuito che rendono il carico distribuito adatto agli amplificatori di potenza audio, rispetto a un amplificatore basato su triodo, tetrodo a fascio o pentodo, sono le seguenti:

  1. L’impedenza di uscita viene abbassata a circa la metà di quella ottenuta con un triodo.
  2. La distorsione viene abbassata per avvicinarsi a quella ottenuta con una valvola triodo, ma può essere ancora inferiore nell’operazione ultralineare.
  3. La potenza in uscita è superiore rispetto a quella di un triodo, avvicinandosi a quella fornita da un pentodo.
  4. La potenza in uscita è più costante, poiché il carico distribuito è una combinazione di un amplificatore di transconduttanza e di un amplificatore di tensione.

Alan Blumlein nel passato ha inventato e utilizzato la connessione ultralineare esclusivamente in circuitazioni pushpull e come lui tutti i produttori storici, non vi sono esempi di amplificatori che utilizzino la connessione ultralineare in single ended se non in tempi recenti, scopriamo il perchè! Qui sotto lo schema di un’amplificatore Single Ended Ultralineare realizzato da un cliente SB-LAB apparso in questo articolo (clicca). Come si può vedere la griglia schermo è collegata ad una presa intermedia del trasformatore di uscita.

Voglio far notare il valore della resistenza posta sotto al catodo della KT88 nello schema, del valore di 360ohm… Ora cito quanto mi ha scritto il cliente che ha realizzato questo schema “se può aggiungere una sua nota nel non farsi influenzare dalla resistenza da 360 ohm, io l’ho sostituita con un valore misurato di circa 190 ohm, dopo vari tentativi perchè non tornava la giusta corrente di bias” … È un particolare molto importante ricordatevelo! Ma dico subito da ora che questo problema evidenzia il fatto che il signor Jean Hiraga non abbia mai testato lo schema che ha pubblicato su internet, perchè si sarebbe accordo che la polarizzazione della finale non torna. Questo schema circola su internet da decenni e nessuno si è mai posto il problema di capire come mai non tornasse la corrente di bias (molti sicuramente non se ne sono nemmeno mai accorti e hanno ascoltato solo distorsione felici e ignari affermando quasi sicuramente che andava anche bene).

Tutti coloro che hanno una minima conoscenza di progettazione e sono in grado di interpretare le curve caratteristiche di una valvola, che sia essa un triodo o un pentodo, e che possono disegnare una retta di carico basata sull’impedenza del carico, quindi del trasformatore di uscita, sanno che si seleziona un punto di lavoro tensione/corrente “qualsiasi”, o almeno ci si basa spesso su punti di lavoro caratteristici, nel rispetto dei limiti di dissipazione della valvola, e quindi si traccia la retta che dipende dall’impedenza di carico. Tuttavia, è importante sottolineare che quando si utilizza una valvola connessa in modalità ultralineare, non è possibile selezionare liberamente un punto di lavoro a piacere. Si è infatti vincolati dalla caratteristica della griglia schermo. Ogni modifica della tensione del punto di lavoro comporta una completa modifica del percorso delle curve caratteristiche della valvola. Per chiarire ulteriormente questo concetto, possiamo fare riferimento alle curve presentate nel datasheet della KT88 della Genalex (clicca per ingrandire):

Inizio sottolineando che nel datasheet della KT88, l’utilizzo della modalità ultralineare viene descritto esclusivamente in configurazioni push-pull. In sostanza, all’epoca, non suscitava nessun interesse l’idea di utilizzare l’ultralineare in un amplificatore single-ended. Tuttavia, potrebbe verificarsi il seguente ragionamento da parte di un progettista poco attento: ‘Bene, l’impedenza tipica per una KT88 in configurazione single-ended è di 2500 ohm. A occhio, posso impostare una tensione di 250 volt con 120 mA di bias e una tensione di griglia di circa -32 volt…’. Questo porta alla generazione di una retta caratteristica che può essere visualizzata di seguito:

Per evitare di dover effettuare montaggi fisici in laboratorio, utilizzeremo LTSpice per simulare questa la polarizzazione (2,5k primari e 8ohm secondari con UL al 50%) di una KT88 in questa configurazione e osservare i risultati ottenuti. Il modello della KT88 utilizzato è quello sviluppato da Norman Koren, noto per la sua accuratezza, e posso garantire che se fosse stato realizzato con una valvola reale, il risultato sarebbe stato altrettanto preciso. In teoria dovremmo ottenere una corrente di 120mA che scorre nel catodo…

Ecco cosa accade: La corrente di BIAS è di 24mA !!! A questo punto, chiunque abbia anche solo una minima conoscenza del campo (gli autocostruttori hobbisti sono perdonati, ma chi si definisce un progettista dovrebbe essere in grado di riconoscerlo!) dovrebbe chiedersi: ‘Ma perché le curve caratteristiche prevedono una corrente di 120mA e invece quando assemblo il circuito ne ottengo solo 24?!’ In altre parole, una piccola differenza dovuta alla tolleranza delle valvole è comprensibile, quindi devo regolare leggermente il bias. Ma trovare 24mA invece di 120 è una discrepanza così significativa che dovrebbe destare seri dubbi sulla correttezza della teoria utilizzata per stabilire la polarizzazione della valvola. In realtà, la maggior parte delle persone ignora questo segnale d’allarme e continua a regolare il bias fino a forzare la corrente della valvola senza porsi ulteriori domande. Proviamo a dargli segnale…

Il circuito sembra funzionare ora, anche se è evidente una forma d’onda fortemente distorta (in blu il segnale in ingresso e in verde quello in uscita). Quindi, ciò che ci si potrebbe chiedere è: perché, quando si realizza un amplificatore single-ended in modalità ultralineare, la corrente di bias e l’impedenza del trasformatore non coincidono con le aspettative? Diamo un’occhiata più approfondita alle curve presentate nel datasheet…

Notate quella linea tratteggiata con l’indicazione Va,g2(o) = 425V? Facciamo un breve ripasso sul funzionamento delle valvole, sia triodi che pentodi, e concentriamoci soprattutto sulla loro struttura interna. Iniziamo osservando il triodo, che dispone di una sola griglia e una piastra a forma di “toast,” molto sottile e vicina al catodo.

Successivamente, passiamo a osservare un tetrodo o pentodo, che dispone di 2 o 3 griglie (nel caso del tetrodo a fascio, la terza griglia è costituita da due sottili lamelle metalliche, ma in questo articolo non ci concentreremo su questa terza griglia). È invece cruciale notare che la piastra è situata a una distanza molto maggiore dal catodo rispetto a quanto accade nei triodi…

Nei triodi, il campo elettrico generato dalla placca agisce direttamente sugli elettroni, attrattivamente, mentre la griglia di controllo (G1) a tensione negativa li rallenta e ne regola il flusso. Nei tetrodi o pentodi, tuttavia, la placca è situata a una distanza troppo grande dal catodo per attrarre gli elettroni emessi da sola (o li attrarrebbe solo debolmente). In questi dispositivi, la griglia schermo (G2), polarizzata positivamente e posizionata subito dopo la griglia di controllo (G1), accelera il flusso di elettroni. Tuttavia, poiché G2 è costituita da sottili fili, la maggior parte degli elettroni non riesce a depositarsi su di essa. Invece, a causa della velocità acquisita, in quello che potremmo definire un effetto fionda, continuano la loro corsa oltre G2, fino a raggiungere il campo elettrico generato dalla placca, che li attira definitivamente verso di essa. È quindi evidente che la corrente che raggiunge la placca di un pentodo non dipende solo dalla tensione negativa applicata a G1, ma anche dalla tensione positiva applicata a G2.

Nella connessione ultralineare, a riposo, la tensione che arriva a G2 è pressoché la stessa che arriva alla placca, dato che la resistenza interna dell’avvolgimento del trasformatore è quasi irrilevante in questo contesto. Ciò significa che se si varia la tensione di placca, si varia anche la corrente che attraversa la valvola in modo significativo. Questo avviene perché la tensione su G2 varia inevitabilmente insieme alla tensione di placca. In modalità ultralineare, quindi, possiamo parlare di curve “dinamiche,” mentre nei triodi e nei pentodi connessi come pentodi, le curve sono “statiche”.

Le linee tratteggiate nel datasheet Genalex a cui ho fatto riferimento precedentemente indicano essenzialmente che il punto di lavoro può essere posizionato a una corrente qualsiasi, ma deve rimanere sopra quella linea, ossia a 425 volt! Se si modifica la tensione del punto di lavoro, le curve rappresentate nel datasheet non sono più valide e cambiano completamente. Esaminiamo questo fenomeno con l’ausilio di uTracer, che può essere configurato per acquisire anche curve in modalità ultralineare. Tuttavia, per motivi precedentemente menzionati (e a causa di una mancata implementazione software), uTracer acquisisce curve dinamiche solo al di sotto della tensione specificata (quella delle linee tratteggiate di Genalex). Per comprendere appieno il fenomeno delle curve dinamiche, ho quindi evidenziato con un pallino nero un punto intermedio corrispondente a 300 volt, con la griglia di controllo G1 a una tensione di -25 volt.

Con una tensione di “stop” a 400 volt abbiamo 80mA a 200volt con G1 a -25…

Se portiamo la tensione di “stop” a 300volt la corrente misurata sempre sui 200volt con -25 di G1 scende a un pò meno di 40mA

Se poi abbassiamo ulteriormente la tensione di “stop” a 250volt ci ritroviamo una corrente inferiore ai 20mA

Inoltre, si può notare che la capacità di erogazione di corrente della valvola diminuisce notevolmente, mentre la sua resistenza interna aumenta, come evidenziato dalla pendenza delle curve. Questo implica che la capacità di erogare corrente e quindi potenza è notevolmente compromessa. Ad esempio, a una tensione di ‘stop’ di 400 volt, la valvola potrebbe raggiungere un picco di 170mA a 50 volt, ma solo 60mA con una tensione di ‘stop’ di 250 volt.

Se ciò non bastasse, la modifica della pendenza delle curve richiede anche la modifica dell’impedenza del trasformatore per evitare forti distorsioni. La potenza erogata all’altoparlante è quasi la stessa (o insignificativamente superiore) a quella ottenuta con una connessione a triodo puro. Tuttavia, in modalità triodo puro, la valvola risulta estremamente più lineare. In definitiva, se non si intende utilizzare la valvola in modalità pentodo puro, potrebbe essere più vantaggioso utilizzarla in modalità triodo puro senza neppure considerare l’opzione dell’ultralineare.

È importante notare che tutte queste considerazioni riguardano l’uso in classe A (sia single-ended che push-pull), in cui la tensione del punto di lavoro non è elevata e le curve UL a diverse tensioni non sono conosciute. La connessione ultralineare è stata concepita per essere utilizzata in push-pull in classe AB, dove la tensione a riposo è elevata. In queste condizioni, la valvola funziona bene e offre vantaggi in termini di distorsione e talvolta anche di potenza. Ad esempio, le KT88 possono erogare solitamente fino a 50 watt in modo sicuro in un push-pull in classe AB a pentodo. Oltre questa potenza, la griglia schermo inizia a mostrare segni di stress a causa dei picchi di corrente quando la tensione di placca scende al di sotto della tensione dello schermo. Tuttavia, quando le KT88 sono connesse in modalità ultralineare, è possibile ottenere tranquillamente 70/75 watt senza problemi di arrossamenti della G2, grazie al controllo migliore della corrente.

Ora esaminiamo questa retta di carico con un punto di lavoro a 425 volt, una corrente di 75mA, una tensione di griglia di controllo di -50 volt e un’impedenza del trasformatore di 6k…

In questa simulazione, otteniamo una corrente di 66mA, che è molto vicina ai valori previsti (piccole imprecisioni possono essere attribuite al modello matematico utilizzato). In questo caso, la corrente di bias torna ai valori attesi poiché ho selezionato un punto di lavoro sulla linea tratteggiata del datasheet a 425 volt. Questo dimostra la validità delle mie affermazioni finora esposte. Vediamo come si comporta se pilotato con un segnale sinusoidale:

E ancora una volta, il segnale in uscita mostra una forte distorsione e non soddisfa le aspettative. Si può notare una semionda fortemente schiacciata, ma quale potrebbe essere la causa di questo problema? L’asimmetria delle curve UL è chiaramente visibile; è sufficiente aprire le immagini e osservarle attentamente. Sulla sinistra, i passaggi tra le curve sono visibilmente più larghi rispetto a quelli sulla destra del grafico, indicando che le due semionde riprodotte da un punto di lavoro ipotetico X saranno sempre una allungata e l’altra accorciata. Questo fenomeno è intrinseco alla connessione ultralineare e rappresenta una delle ragioni per cui il circuito è stato concepito per l’uso in push-pull, in cui questa distorsione viene mutualmente annullata dalla valvola gemella che lavora in fase opposta.

È possibile vedere il comportamento di un circuito reale in questo articolo, all’inizio del quale prendo in esame un’amplificatore che utilizzava una KT88 in single ended UL su carico di 6k, di cui posto qui sotto la forma d’onda catturata (in giallo il segnale del generatore e in blu quello che esce dal circuito).

Come è possibile osservare, il comportamento riproduce fedelmente quello delle simulazioni. Inoltre, desidero sottolineare alcuni altri aspetti evidenziati dai miei esperimenti:

  1. La KT88 in modalità SE ultralineare è in grado di erogare effettivamente circa 6 / 6,5 watt, ma con una forte distorsione che potrebbe essere considerata inaccettabile, e richiede uso di controreazione a meno che non siate appassionati della distorsione, ovvero ‘distorsofili’.
  2. La KT88 a pentodo arriva a erogare 12watt con uso di controreazione.
  3. La KT88 connessa a triodo arriva a erogare circa 5 / 5,5watt a triodo con basse distorsioni.

La mia conclusione personale è che, se si sta lavorando in modalità single-ended con un pentodo o lo si utilizza a pentodo per ottenere potenza, o lo si connette a triodo per ottenere linearità, la connessione ultralineare non offre alcun vantaggio significativo. La maggiore potenza rispetto alla connessione in triodo è insignificante, mentre la distorsione è troppo alta e richiede l’uso di controreazione. In questo caso, sarebbe più sensato utilizzare un pentodo puro, dove almeno si dispone di una maggiore potenza. Oppure se vuole linearità e si usa la valvola a triodo. Io vedo l’uso della connessione UL nei Single Ended (sopratutto se zero feedback) solo come un modo per ottenere distorsione. Ovviamente tutto questo ha valore per l’uso nei single ended, mentre nei pushpull l’uso della connessione UL porta grandi vantaggi.

E a questo proposito, vorrei segnalare un’alternativa migliore alla connessione ultralineare, che è la connessione Shadeode. Questa configurazione può essere utilizzata anche in modalità single-ended e offre la piena potenza di un pentodo unita alla linearità di un triodo. Presenta inoltre interessanti vantaggi, come un elevato fattore di smorzamento e basse rotazioni di fase, aspetti in cui la connessione single-ended ultralineare fallisce miseramente.

Continue reading...

6 Responses to Amplificatori Single Ended e Connessione Ultralineare

  • Quelli di norman koren sono buoni, comunque i risulti sulla distorsione della KT88 SE+UL li ottieni tali e quali anche con una KT88 vera sul tavolaccio di prova o sui vari amplificatori pastrocchio che ho avuto in mano, autocostruiti dai clienti o venduti in giro dai vari cinesi o non cinesi… Il guadagno del tubo diminuisce sulle tensioni alte e aumenta in basso (si vede anche a occhio guardando le curve) rendendo la valvola estremamente assimetrica, in pushpull funziona perchè sovrapponi le 2 valvole ribaltate una con l’altra che produrranno una piccola distorsione di terza ma è palese che diventa un distorsore inaccettabile in single ended.

  • Ci sono diversi file spice in giro della KT88, dove hai trovato il file spice affidabile a cui fai riferimento? Grazie

  • Tu stai parlando di un pushpull, l’ultralinare nei pushpull va bene e non è un problema, anzi per le KT88 va meglio che a pentodo. Il problema dell’ultrlineare è se lo vuoi fare in single ended, in quel caso la valvola lavora con le 2 semionde fortemente assimmetriche. Per capire se un trasformatore è in corto bisognerebbe iniettare segnale sul suo primario e vedere se sul secondario esce pulito o con delle distorsioni, con un tester non lo puoi capire. Di certo però un trasformatore con un pezzo di avvolgimento in corto emetterebbe pernacchioni e non solo un leggero rumorino…

  • Buon giorno,

    come prima cosa La ringrazio per la spiegazione, ne faro’ tesoro.
    Ho una domanda, ho riparato un amplificatore in Kit di nuova Elettronica (LX1113).
    Monta 2 KT88 in configurazione Push-Pull ultralineare (grazie a lei ora so’ cosa significa).
    Dopo aver riportato in vita detto amplificatore, piste bruciate e resistenze di griglia schermo esplose, sostituite due ECC82, una KT88 ed effettuate le tarature della corrente di bias mi sono accorto che un canale aveva un leggero ronzio (16 mVpp), indagando ho scoperto che l’avvolgimentio dell’ultralineare di una sola KT88 (quella che era in cortocircuito fra catodo e griglia schermo) risulta con caratteristiche alterate (gli altri avvolgimenti sono perfetti ).
    L’amplificatore sembra funzionare ma non vorrei che questa condizione porti ad un nuovo disastro. Quali rischi si corrono a lasciarlo cosi’?
    Cosa mi consiglia di fare? e’ indispensabile la sostituzione del trasformatore di cui sopra?
    E’ la mia prima riparazione su un valvolare.

    Cordialmente
    Antonio

  • Come ho scritto sull’articolo a mio parere l’uso di ultralineare in configurazione SE non porta nessun vantaggio ma solo maggiore distorsione, basta che guardi le curve di esempio della KT88 sull’articolo, come puoi vedere è assimetrica,, la distanza tra le varie linee inizialmente è più larga che verso la fine, in SE non è lineare. L’UL è nato per essere usato nei pushpull dove diventa vantaggioso usarlo, se con la 6V6 triodo ottieni 3 watt con l’UL ne hai forse 3,2?! ma distorce molto di più! non ha senso, fallo andare a triodo, oppure se vuoi più potenza a pentodo. Poi fai quello che vuoi, ma io non lo farei. Posso segnalarti questo progetto https://www.sb-lab.eu/sb-varuna-phono-single-ended-6v6gt/ , di cui potrei rendere disponibile lo schema come premium, posso fornirti il set di trasformatori per realizzarlo o per realizzare quello che hai trovato su internet, ho visto lo schema è molto semplice e va bene per cominciare, oltre alla 12AU7/ecc82 potresti usare anche altre valvole simili e anche la poco conosciuta e snobbata ECC84 che è antesignana della ECC88, ha un mu di poco superiore alla ecc82 (24 invece di 22) ma la pendenza della curve è molto inferiore (ha una resistenza interna che è quasi la metà di quella della ECC82!), potrei anche suggerirti qualche modifica come ad esempio un feedback disattivabile o variabile così puoi sentire la differenza ad orecchio e formare una tua preferenza invece di dar solo credito ai soliti guru.

  • Ciao ho letto con interesse tutta la trattazione e siccome mi stò accingendo anche io alla costruzione di un single end (modesto in potenza e senza tante pretese essendo il mio primo…) con finali 2x 6V6 pilotate da 1/2 triodo ecc82 per canale, vorrei chiedere un parere.
    Lo schema che ho trovato in rete e che mi è piaciuto è realizzato con TU a presa intermedia. Cito il modello per chiarezza: 6V6 Marblewood.
    Dovendo approvvigionarmi dei 2 TU, mi domando se un TU ultralineare non è sufficiente, anche in considerazione del fatto che ho visto altri schema dove la tensione di graglia schermo viene prelevata dalla tensione anodica tramite una resistenza.
    Ringrazio e attendo un parere

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Il Triodino 2 “Rework” – v2.1 – Perchè non dovete costruire l’originale…

Considerazioni importanti sulla valvola 5998A e altre valvole regolatrici

La valvola 5998A è progettata principalmente per fungere da valvola di uscita a inseguitore catodico in applicazioni come regolatore di tensione in serie. La sua caratteristica più significativa è il suo valore eccezionalmente basso di resistenza interna (Ri), nominalmente di 350 ohm, che consente alla valvola di fornire fino a 250 mA con una caduta di tensione anodo-catodo inferiore a 50V. È importante sottolineare che queste specifiche di funzionamento si applicano a ciascuna metà della valvola. La valvola 5998A non è stata originariamente progettata per essere utilizzata in applicazioni audio. Come già detto in origine, è stata creata per essere impiegata come regolatore di tensione in alimentatori stabilizzati. Quando utilizzata in applicazioni audio, la valvola può presentare problemi che non erano rilevanti nel suo utilizzo originale.

Una delle principali sfide nell’utilizzo della valvola 5998A in applicazioni audio riguarda l’instabilità del bias. Nel corso del tempo (minuti, ore), il bias può variare significativamente, causando problemi di polarizzazione, linearità e sovraccarico delle alimentazioni, soprattutto se i circuiti di bias non vengono implementati correttamente. Gli audiofili che desiderano utilizzare questa valvola per scopi audio devono prestare particolare attenzione a questi aspetti e adottare misure appropriate per affrontarli.

La sua costruzione presenta una forma particolare per garantire che i fili della griglia rimangano sufficientemente raffreddati per prevenire l’emissione di elettroni, anche verso la fine della vita della valvola, quando materiale attivo dalla superficie del catodo potrebbe essersi depositato sulla griglia. La valvola 5998A ha una struttura che comprende un catodo piatto, una griglia di controllo avvolta tra aste scanalate e un’anodo diviso in due sezioni a forma di “U” piatte, una su ciascun lato del catodo.

Gli elettrodi al suo interno sono vicinissimi e proprio per questa estrema vicinanza essa è soggetta a derive importanti del bias dovuta alla deformazioni meccaniche degli stessi elettrodi quando questi variano di temperatura, sempre a causa della vicinanza tra gli elettrodi bisogna stare molto attenti a non oltrepassare le tensioni massime ammesse per non rischiare che avvengano scariche interne, che potrebbero anche distruggere la valvola o guastare l’amplificatore su cui sono montate.

Pertanto, sebbene la valvola 5998A possa essere utilizzata in applicazioni audio, gli audiofili devono essere consapevoli delle sue peculiarità e delle sfide associate al suo utilizzo, ossia la corretta implementazione del bias.

È importante sottolineare che le considerazioni e gli avvertimenti riguardanti l’instabilità delle caratteristiche si applicano a tutte le valvole regolatrici, comprese le 6AS7, le 6080, le 6336 e le 6C33. Queste valvole condividono la tendenza a presentare una forte instabilità delle caratteristiche di placca durante il riscaldamento e di avere derive molto grandi e che si compiono in lunghi tempi di riscaldamento. Questa instabilità non era un problema nel loro utilizzo originale, queste valvole operavano all’interno di circuiti con una retroazione molto forte che compensava efficacemente le derive. Tuttavia, quando vengono utilizzate in applicazioni audio questa instabilità può diventare un problema significativo. È importante comprendere le peculiarità di queste valvole e adottare le misure appropriate per garantire un funzionamento stabile e affidabile nel contesto audio.

Analisi dei difetti nel progetto Triodino 2

Nel mondo dell’autocostruzione audio a valvole, mi ritrovo ancora una volta a evidenziare inconvenienti. Non posso fare a meno di notare che ci sono numerosi schemi e progetti che circolano da oltre 25 anni, pieni di errori, senza che nessuno si sia mai accorto o abbia avuto la volontà di correggerli. Sembrerebbe che l’unico criterio di giudizio sia che l’apparato “suoni”, senza prestare attenzione a una progettazione accurata come la ritengo necessaria. Questo articolo nasce dalla richiesta di “P.C.” di un set di trasformatori per realizzare un progetto trovato su una vecchia rivista, chiamato Triodino 2 con la valvola 5998A. Di seguito, allego lo schema che mi è stato inviato:

Ormai ho imparato a non fidarmi ciecamente degli schemi provenienti da internet, riviste e libri scritti da vari “guru”. Appena ho dato un’occhiata a quei 350 volt, mi è subito venuto il sospetto. Ho consultato il datasheet della valvola 5998A e ho scoperto che è essenzialmente una versione leggermente potenziata della 6AS7 o 6080, differendo solo per la massima dissipazione di potenza, che è di 15 watt per la placca rispetto ai 13 watt della 6AS7 e della 6080 e ha un mu superiore. Per il resto, le tre valvole sono praticamente identiche.

Facendo alcuni calcoli semplici, ho notato che la resistenza di catodo indicata è di 1k e viene specificato un voltaggio di 53 volt. Applicando la legge di Ohm (I = V/R), la corrente che scorre attraverso la resistenza di catodo è di 53 mA. Se sulla placca sono presenti 350 volt, sottraendo i 53 volt che cadono sulla resistenza, sulla valvola rimangono 350 – 53 = 297 volt. Pertanto, la potenza dissipata è di 297 * 0,053 = 15,74 watt, già leggermente oltre il limite massimo di dissipazione consentito per la 5998A. Il secondo problema sono quei 297 volt che cadono sulla 5998A…

Ora, diamo un’occhiata ad un estratto del datasheet della 5998A…

Il sottotitolo della sezione recita “Valori ASSOLUTI” e poco più avanti si legge “Tensione di placca continua = 275V”, che indica la massima tensione fissa che la valvola può tollerare in modo sicuro. Tuttavia, in questo progetto, si applicano 297V, superando il valore massimo specificato. È importante sottolineare che è sottointeso e buona pratica far funzionare una valvola SOTTO i suoi valori massimi. Nel caso di valvole regolatrici di tensione come questa, è particolarmente importante rispettare i valori massimi di tensione di placca, poiché la loro costruzione interna prevede distanze ridotte tra i vari elettrodi (catodo, griglia, placca come si vede nella foto poco sopra) per ottenere resistenze interne molto basse. Di conseguenza, l’isolamento tra questi elementi si riduce drasticamente. Inoltre, è necessario considerare le dilatazioni termiche dei metalli. Superare questi limiti significa mettere a rischio la valvola con il pericolo di scariche interne. Le voci di coloro che affermano di averlo fatto senza problemi sono irrilevanti. I datasheet sono considerati come una guida affidabile, chi nel passato ha progettato la valvola sapeva quello che faceva più di quelli che fanno chiacchere da bar.

Inoltre, ho effettuato una simulazione del circuito in questione per verificare i dubbi riguardo all’impedenza corretta del trasformatore (2500 ohm). Lo screenshot che segue mostra chiaramente la presenza di distorsione armonica, senza necessità di analisi spettrale. È evidente anche una forte compressione nella semionda di salita, causata dalla bassa resistenza di ancoraggio della griglia finale (100k, troppo bassa), che sovraccarica il triodo pilota dell’ECC81.

Nel contesto di questo progetto, i famosi “8 Watt Sopraffini” si sono distinti, ma in realtà, non sono nemmeno 7 watt RMS pieni prima che si verifichi il clipping. Questa valutazione è basata su simulazioni, ma nella realtà potrebbero essere raggiunti solamente 3 o 4 watt effettivi RMS. Ho sollevato questi dubbi a “P.C.” (forse sono stato il primo ad avere il coraggio di farlo in 25 anni? O forse semplicemente sono l’unico a essermene accorto?), e mi ha confessato che anche lui aveva qualche sospetto in merito, ma non osava dire nulla poiché è solo un appassionato. Tuttavia, mi ha informato dell’esistenza di uno schema modificato, sempre pubblicato dagli stessi autori, che rappresenta un ritorno sui loro passi. Di seguito, puoi trovare lo schema modificato:

Probabilmente dopo un fuoco d’artificio, in questa variante, hanno cercato di correggere gli errori presenti nello schema precedente, abbassando la tensione che arriva alla valvola a 257 volt, finalmente rientrando nei limiti consentiti, con una dissipazione di 11 watt (un valore conservativo anche per una 6AS7/6080). Tuttavia, un errore persiste ancora nello schema: viene indicato di utilizzare la valvola raddrizzatrice 5U4 o, in alternativa, la GZ34. Tuttavia, queste due valvole raddrizzatrici presentano cadute di tensione diverse a causa delle loro diverse resistenze interne e limiti di corrente. Di fatto, se con una 5U4 si avrebbero 300 volt sulla placca della 5998, con una GZ34 si avrebbero 340 volt… e questa non è una differenza irrilevante! Una differenza irrilevante sarebbe stata se avessero indicato di sostituire la 5U4 con una 5X4 (sento già le voci di certi personaggi che iniziano a fare osservazioni sul fatto che la 5X4 era utilizzata nelle TV e nelle radio, non essendo considerata una valvola “audio” e così via… Ma la 5U4 e la 5X4 sono ESATTAMENTE la stessa valvola con connessioni sui pin dello zoccolo differenti. Punto, basta e finita la questione! Ne ho sentite abbastanza di queste inutili polemiche).

Tuttavia, l’uso della GZ34 richiede un trasformatore con una tensione più bassa o, almeno, un qualche accorgimento come una resistenza in serie alla valvola per smaltire l’eccesso di 40 volt. Ma niente, ancora una volta, si lasciano le cose al caso. Poi sui forum si legge di persone che parlano del diverso suono delle valvole raddrizzatrici, ma con schemi del genere, la differenza di suono deriva semplicemente dal fatto che cambia la tensione del circuito. Con 40 volt in più, sfido a dire che non ci sarà una distorsione minore e un po’ più di potenza, ma si spinge nuovamente la finale oltre le sue possibilità…

Continuando con le modifiche apportate al secondo schema del Triodino 2, è evidente che anche il trasformatore è stato modificato con un’impedenza di 3200 ohm, più adatta alla valvola utilizzata. Inoltre, è stata mantenuta una presa a 2500 ohm per coloro che desiderano ottenere una maggiore distorsione. È importante notare che l’aumento dell’impedenza riduce la distorsione ma comporta anche una diminuzione della potenza erogata, secondo quanto dichiarato dagli autori, che cala a 3,5 watt effettivi. A fini di completezza di questo articolo, desidero anche menzionare il progetto Lilliput, che è molto simile a quelli appena descritti. Di seguito, riporto velocemente lo schema del progetto Lilliput:

Nel progetto Lilliput, la tensione di placca della valvola 6080 è notevolmente ridotta, il che la fa funzionare in modo estremamente conservativo. La potenza resa supera di poco i 2 watt su un trasformatore con un’impedenza di 1400 ohm. Il tasso di distorsione riscontrato non differisce da quello mostrato nello screenshot di LTspice che ho condiviso in precedenza. Durante la nostra conversazione con “P.C.”, è emerso che era interessato anche alla possibilità di utilizzare entrambe le sezioni della valvola in parallelo per ottenere una maggiore potenza. Mi ha condiviso questa immagine JPEG, ottenuta attraverso una faticosa ricerca su Google, che mostra un grande sforzo progettuale:

In realtà, trasformare il Triodino 2 in una versione PSE richiede solo pochi accorgimenti per far lavorare al meglio i due triodi parallelati. E no, non si tratta semplicemente di mettere due resistenze di catodo con due condensatori separati per ogni triodo. Lo dico per smentire coloro che, passando su questa pagina e vedendo lo schema premium non leggibile, potrebbero pensare: “Chissà cosa nascondi, si capisce…”. Non è come pensi! Siccome alcune persone considerano le soluzioni banali, nonostante nessuno sia mai arrivato a scoprirle in trent’anni, ritengo giusto tenerle per me. Chiunque sia interessato può acquistare lo schema e i trasformatori.

La seconda cosa è che se un triodo funziona bene su un’impedenza di 3200 ohm, quando si mettono in parallelo due triodi, l’impedenza deve essere ridotta a 1600 ohm. La corrente raddoppia e l’impedenza si dimezza. Ovviamente, il trasformatore d’uscita deve essere calcolato per lavorare con quella corrente continua specifica e con una valvola che ha una resistenza interna dimezzata. Non come coloro che prendono un trasformatore X pensato per mezza 6080, poi parallellano la 6080, raddoppiano la corrente nel trasformatore e pensano che vada bene. In realtà, il trasformatore si satura e i bassi non escono come dovrebbero. Inoltre, bisogna considerare che l’assenza di feedback negativo può causare fastidi.

Ho ritoccato i valori di taglio della cella formata dal condensatore di disaccoppiamento e la resistenza di ancoraggio della finali per spingere meglio in basso il circuito, ho aggiunto qualche accorgimento sull’ingresso e sui catodi di entrambe le valvole. Il circuito usa una ECC81 come pilota della 5998A e il guadagno complessivo è tale per cui bastano 1,7Vpp in ingresso per portare la finale alla saturazione, essendo quindi bello sensibile come circuito e avendo sulla carta uno smorzamento di solo 2,9 (nella realtà sarà inferiore, stimo non superiore a 2) ho pensato bene di aggiungere una rete di controreazione disattivabile con un’interruttore. Ad anello aperto è praticamente il circuito originale solo PSE con poche marginali migliorie mentre con la controreazione attiva la sensibilità del circuito cala a 3Vpp per avere il pieno clipping della finali, lo smorzamento aumenta considerevolmente ad un tasso che nel reale dovrebbe quanto meno raggiungere un fattore di 5. La potenza raggiungibile in questa configurazione nella simulazione raggiunge i 9,2 watt prima del clipping nel mondo reale potrebbero essere 7 massimo 8Watt RMS prima del clipping, questa volta veri e non numeri gettati a caso come fanno praticamente tutti tranne me.

Ho ricalcolato il trasformatore di alimentazione e lo stadio con la raddrizzatrice e la cella CLC, ci sono stato dentro con una 5U4GB o una 5X4G. La GZ34 non è contemplata. Per me le cose devono essere precise.

Ecco lo schema premium

Ecco qui, dopo circa 2 anni, le prime foto del montaggio di Cesare

Problemi a non finire !

Ammetto di non sapere tutto; per imparare certe cose, è necessario sperimentarle. Il cliente che doveva realizzare questo progetto continuava a riscontrare problemi di funzionamento. Nonostante l’amplificatore “suonasse bene” (secondo lui), essendo un lettore del mio sito, si sentiva spinto a misurare e verificare diverse cose. Alcune di queste misurazioni non tornavano e mi rivolgeva domande. Alla fine, i problemi rimanenti, con il senno di poi, sembrano banali (anche se, come vedremo, non sono trascurabili), ma risolverli non è stato un compito semplice.

E ancora una volta, mi viene in mente quanta gente, nel corso di 25/30 anni, abbia assemblato questo progetto senza mai accorgersi di nulla. In pratica, il costruttore medio si limita ad accendere l’apparecchio e a essere soddisfatto finché non prende fuoco o non emette rumori strani. Non si preoccupa di indagare, misurare o verificare se l’apparecchio funziona davvero al meglio delle sue possibilità. Tutto ciò è triste.

Il cliente lamentava diversi problemi con il suo montaggio, tra cui la presenza di distorsione alle basse frequenze proveniente dal trasformatore d’uscita. Inoltre, la tensione sulla resistenza di catodo delle 5998A non era quella corretta e vi erano significative differenze nelle tensioni di bias tra i triodi delle due sezioni. Queste differenze variavano considerevolmente nel corso del tempo, dopo 30 minuti, un’ora o due ore, con variazioni enormi che non potevano essere ignorate per la salute dei trasformatori d’uscita, della valvola raddrizzatrice e delle stesse 5998A. È importante sottolineare che, sulla carta, il bias avrebbe dovuto essere di circa 50mA per ogni triodo, ma in realtà poteva variare fino a 200mA per triodo. Era una situazione ingestibile, così come il calore generato dalle resistenze di bias. Inevitabilmente, il trasformatore d’uscita presentava problemi di saturazione a causa della corrente che superava di gran lunga i 110mA per cui era stato progettato, arrivando quasi a 300mA in certi momenti.

Ho dovuto intervenire in aiuto a “P.C.”. Nonostante abbia provato diverse coppie di valvole, NOS a pure costose, vendute come “match”, la situazione non migliorava. La polarizzazione in self bias non era praticabile, così come quella a bias fisso, poiché in entrambi i casi si sarebbe dovuto regolare il bias ogni 5 minuti, il che era inaccettabile. L’unica soluzione era adottare un circuito di servobias, che consiste in un circuito attivo che utilizza un opamp configurato come comparatore. Questo circuito rileva la tensione su una piccola resistenza in serie al catodo di ogni triodo e si occupa di regolare la tensione negativa di griglia, garantendo che il bias di ciascuno dei 4 triodi sia sempre mantenuto allo stesso valore desiderato.

Sorgeva però un altro problema: se avessi voluto polarizzare le 5998A a bias fisso, avrei dovuto eliminare la resistenza sotto al catodo, dove cadevano circa 100 volt. Ciò avrebbe comportato una differenza di potenziale troppo elevata tra il catodo e l’anodo della 5998A. Era assurdo dover scartare il trasformatore di alimentazione solo perché forniva troppa tensione. Ho quindi pensato di adottare un’alternativa: un’ alimentazione a ingresso induttivo con una cella LCLC (questo farà sicuramente sbavare alcuni audiofili). L’ingresso induttivo avrebbe permesso di non moltiplicare per 1,41 la tensione raddrizzata, consentendo di ottenere una tensione anodica filtrata più bassa senza dover sostituire il trasformatore di alimentazione. Tutto ciò di cui avevo bisogno era mettere a punto un’induttanza apposita per questo scopo. È importante notare che le induttanze per l’ingresso induttivo devono essere costruite in modo diverso rispetto a quelle tradizionali di livellamento, per evitare vibrazioni e rumori nell’alimentazione. Nella foto sottostante stavo sperimentando l’induttanza di ingresso induttivo e sono riuscito ad ottenere un ottimo risultato al secondo tentativo.

Quindi, dopo aver implementato il servobias e creato un’induttanza di ingresso, i problemi di questo circuito iniziarono a diminuire gradualmente. Tuttavia, l’ultima sfida che mi si presentò fu un’auto-oscillazione RF intorno ai 3 MHz generata dalle finali. Inizialmente, pensai che potesse essere dovuta a un’instabilità nel circuito di controreazione, nonostante fosse presente solo in minima parte. Tuttavia, anche dopo aver scollegato completamente l’ECC81 dallo zoccolo, l’oscillazione persisteva. In pratica, le 5998A oscillavano spontaneamente da sole! Richiamando alla memoria esperienze passate, sapevo che il collegamento in parallelo delle valvole spesso portava a problemi di stabilità. Ricordai di aver visto negli schemi di alcuni alimentatori Geloso o HP (non ricordo di preciso), che utilizzavano le 6AS7 o le 6080, dove non collegavano direttamente i due anodi, ma inserivano due resistenze in serie da 10/15 ohm, come mostrato qui di seguito:

Fatto sta che messe 2 resistenze da 10ohm tra i 2 anodi e il primario del trasformatore d’uscita l’oscillazione si è immediatamente arrestata!

A circuito finalmente stabile ho provveduto a cambiare le resistenze di ancoraggio delle griglie delle finali dal valore del progetto originale (troppo piccole che sovraccaricavano il driver) con altre da 390k riuscendo finalmente anche a pilotare decentemente queste benedette 5998A.

Tutti i problemi che sono sorti sono dovuti al desiderio di apportare il minor numero di modifiche possibile al progetto originale, ma alla fine è rimasto ben poco di esso, se non l’idea di base e il set di valvole. Inoltre, la povera ECC81 riesce a pilotare la 5998A, ma fatica a farlo con una 6AS7 se sostituita nello zoccolo. Le 6AS7/6080 offrono un guadagno inferiore e la ECC81 raggiunge i suoi limiti, non riuscendo a fornire una maggiore potenza. Forse con un solo triodo, o con due triodi in parallelo, potrebbe essere diverso, ma non ne sono sicuro. In ogni caso, ci sono persone che lodano il Triodino 2, ma hanno valvole che driftano nel bias e trasformatori che si saturano di corrente continua. Alcuni hanno apportato modifiche per ottenere una configurazione PSE, e inconsapevolmente fanno ascoltare Rebecca Pidgeon agli abitanti dello Zimbabwe, dove ancora si utilizzano ricevitori a onde tropicali in modulazione di ampiezza. Poi ci sono coloro che leggono e si infuriano perché secondo loro il suono è buono (ma non hanno mai verificato se funziona perfettamente, perché potrebbe suonare ancora meglio). Ci saranno quelli che hanno avuto la fortuna di trovare valvole eccezionalmente ben fatte e non hanno avuto problemi, ma arriverà il giorno in cui dovranno sostituirle. Altri diranno che le valvole devono essere selezionate e quelle di qualità inferiore scartate, ma vorrei dire che questa è la natura di queste valvole e non possiamo scartare la maggior parte di esse considerandole difettose, tenendo solo quelle che miracolosamente funzionano come desideriamo. Non sono le valvole ad essere difettose, sono gli schemi a cui vengono applicate. Se queste valvole hanno una tale natura, è necessario implementare un circuito che ne tenga conto anziché gettarle via come se fossero difettose!

Nel video qui di seguito, mostro il funzionamento del servobias. Utilizzando un tester, misuro la tensione negativa di griglia dei quattro triodi. In quel momento, tutti e quattro i triodi erano perfettamente regolati a 55mA ciascuno, ma la tensione negativa alle quattro griglie non è uniforme, come si può vedere. Se fossimo stati lì ad osservare nel corso delle ore, avremmo notato che la tensione negativa fornita dal servobias alle valvole variava continuamente, mentre la corrente sotto i catodi rimaneva costante. Questa è la differenza tra utilizzare un servobias e un bias fisso tradizionale: con il servobias, puoi goderti la musica senza dover continuamente regolare un trimmer.

Ad ulteriore prova della problematicità di questo tipo di valvole potete leggere questo articolo dove un cliente ha voluto costruire un single ended con la 6C33 con bias fisso tradizionale (trimmer e strumentino a lancetta) non seguendo i miei consigli in merito e dopo pochi mesi mi ha chiesto come implementare un servobias perchè non ne poteva più di essere sempre li a ritoccare il trimmer per rimettere al suo posto il bias delle 6c33.

Mentre questo amplificatore da cuffie OTL con le 6080 con bias self è andato bene per un certo periodo poi a un bel giorno si brucia la resistenza di catodo di una delle 2 e scoppia il condensatore che c’era in parallelo, ma la valvola testata successivamente risultava ancora perfettamente funzionante.

Tra le cose che ho fatto ho aiutato anche “P.C.” ad avere un cabinet più bello, il primo che aveva fatto 2 anni fà era ormai stato demolito…

Puoi vedere altre decorazioni (e tante altre immagini che ho creato) accedendo alla mia galleria su deviantart…

Peccato solo quella vena nel legno 👿 

Ora un pò di misure; la potenza prima del clipping è circa 7,7watt, il fattore di smorzamento pari a un fattore 5.0. La banda passate 10Hz -0,4dB / 22khz -1dB.

E pensate che, nonostante il trasformatore d’uscita abbia solo circa 10Henry di induttanza primaria, si raggiunge ancora una risposta in frequenza di -0,4 dB a 10 Hz. In realtà, come ho spiegato in un altro articolo, l’induttanza primaria è correlata alla resistenza interna della valvola. È importante sottolineare questo punto perché ci sono persone che continuano a diffondere l’idea che i trasformatori debbano avere induttanze primarie astronomiche per funzionare correttamente, ma in realtà stanno fornendo informazioni errate che confondono le persone… Oltre a commercializzare trasformatori che spesso non corrispondono all’induttanza dichiarata, oppure hanno effettivamente tale induttanza ma saturano quando vengono attraversati dalla corrente continua delle valvole.

L’unica piccola pecca del mio trasformatore d’uscita sembra essere una microscopica risonaza che si vede anche a 4,185khz, veramente insignificante e da non escludere siano sempre le 5998 a farlo e non il trasformatore.

Vediamo la risposta sul carico reattivo…

THD a 1watt circa 1%

Le quadre a 100Hz – 1khz – 10khz

Nota finale: Desidero sottolineare che non intendo essere costantemente critico nei confronti dei progetti altrui. Tuttavia, quando mi viene richiesto di fornire trasformatori per il montaggio di progetti non miei, non posso evitare di far notare eventuali errori presenti (se ce ne sono) e suggerire soluzioni e miglioramenti. Questo perché, in casi come questi, gli errori negli schemi possono causare malfunzionamenti che il cliente potrebbe erroneamente attribuire tali problemi alla qualità dei miei trasformatori. La mia intenzione non è essere antipatico, ma piuttosto offrire un supporto completo affinché il progetto funzioni al meglio delle sue potenzialità.

Continue reading...

1 Responses to Il Triodino 2 “Rework” – v2.1 – Perchè non dovete costruire l’originale…

  • La genesi di questo amplificatore è stata meticolosamente descritta da Stefano ed è nata dal momento in cui mi sono rivolto a lui con la richiesta di avere il set dei trasformatori di uscita ed alimentazione per la sua costruzione. Fin da subito mi ha messo in guardia sui difetti presenti nello schema originale dimostrandosi molto preparato in materia fornendomi oltre hai trasformatori lo schema da lui adeguato per pilotare le 5998 o 6AS7 con i triodi in parallelo. Come ha evidenziato dopo la prima costruzione dell’amplificatore qualcosa ancora non tornava e l’ipotesi inziale pareva essere che il trasformatore di uscita andasse in saturazione per eccesso di corrente anodica rispetto a quella stimata e di conseguenza bisognava sistemarlo .Non essendo un tecnico esperto ho quindi spedito l’ampli a Stefano che grazie alla sua competenza e passione è riuscito a sistemarlo come ha descritto . Due mesetti fa sono stato da lui a ritirare l’ampli dove ho avuto modo di ascoltarlo. Indubbiamente questo nuovo amplificatore suona decisamente molto bene . Grazie Stefano. Paolo

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Rigenerare condensatori elettrolitici

Ciao a tutti! Oggi voglio condividere con voi un’esperienza recente che mi ha portato a riprendere in mano un progetto che avevo realizzato ben 10 anni fa, quando ero ancora un semplice hobbysta. Recentemente, sono stato contattato da un grossista di materiale elettronico che aveva la necessità di rigenerare un lotto abbastanza consistente di condensatori elettrolitici Nichicon che aveva in magazzino.

Questi condensatori dovevano essere rigenerati prima di poter essere venduti, e il lotto contava ben 500 pezzi. I condensatori da rigenerare erano di grandi dimensioni, con una capacità di 3900uF e una tensione nominale di 500 volt. Pertanto, il mio vecchio rigeneratore aveva bisogno di alcune modifiche per gestire queste specifiche. Mi diverte ripescare questo vecchio progetto dal mio archivio e dare una rinfrescata all’articolo che avevo pubblicato sul mio sito così tanti anni fa.

Ricordo ancora l’emozione che provai nel vedere il mio rigeneratore funzionare perfettamente quando l’avevo creato per la prima volta. Ma ora, con questa nuova sfida di rigenerare un così grande numero di condensatori, sapevo che era il momento di migliorare e ottimizzare il mio dispositivo. Ho reso il sistema più efficiente e preciso, introducendo controlli aggiuntivi durante il processo di rigenerazione.

Cosa significa rigenerare un condensatore ?

La rigenerazione dei condensatori elettrolitici è una pratica volta a ripristinare le condizioni di normale funzionamento dei condensatori elettrolitici che sono stati inattivi per un lungo periodo. Quando i condensatori nuovi o funzionanti rimangono inattivi troppo tempo, possono entrare in uno stato di “sonno” in cui avviene una separazione chimica degli elementi dell’elettrolita. Prima di utilizzare tali condensatori, è necessario “risvegliarli” attraverso un processo di rigenerazione o reforming, durante il quale si applica gradualmente una tensione al condensatore limitando la corrente di carica. Questo permette agli elementi chimici di riattivarsi o riformarsi, da qui il termine “reforming”.

Il reforming dei condensatori implica un’applicazione controllata di tensione con una limitazione della corrente per un periodo di tempo indeterminato fino a che il condensatore non ha raggiunto la sua tensione nominale con una corrente di perdita prossima a zero. Questo processo permette agli elementi chimici all’interno del condensatore di riformarsi in modo corretto. È importante notare che durante il reforming, la corrente di carica deve essere appunto limitata per evitare scariche interne o cortocircuiti che potrebbero danneggiare il condensatore.

Attraverso il reforming, si mira a ripristinare la capacità nominale, la bassa resistenza interna e le prestazioni originali del condensatore. Tuttavia, è fondamentale ricordare che il reforming è efficace solo per i condensatori che hanno subito una semplice perdita di funzionalità a causa dell’inattività prolungata. Condensatori danneggiati in modo significativo o che hanno raggiunto la fine della loro vita utile non possono essere recuperati tramite il reforming e richiedono la sostituzione con nuovi componenti.

Il rigeneratore

La rigenerazione dei condensatori elettrolitici può essere affrontata attraverso diversi approcci, tra cui l’utilizzo di un variac o di una resistenza in serie per caricare gradualmente il condensatore. Tuttavia, questi metodi presentano alcune limitazioni e rischi, come il tempo variabile necessario per la rigenerazione, il monitoraggio inadeguato della corrente di carica e il potenziale rischio di danneggiare il condensatore.

Per superare tali problematiche, è possibile adottare un circuito dotato di una propria intelligenza per la rigenerazione dei condensatori. Questo circuito applica al condensatore dei treni di impulsi rapidi, ma non distruttivi, monitorando costantemente la corrente di carica assorbita dal condensatore. Ogni volta che la corrente supera un valore impostato, ad esempio 10mA, il circuito effettua delle pause tra un treno di impulsi e il successivo, dando al condensatore il tempo necessario per riformare i suoi elementi interni.

Questo processo di carica a treni di impulsi continua fino a quando il condensatore raggiunge la tensione nominale desiderata, con un assorbimento di corrente pari a zero. A questo punto, il condensatore viene fatto scaricare attraverso una coppia di lampadine. Prima della modifica giugno 2023, si utilizzava semplicemente una resistenza per la scarica dei condensatori, ma quando si trattava di condensatori di grandi dimensioni come questi che devo rigenerare ora, il problema dello smaltimento del calore diventava complicato. Pertanto, una soluzione banale ma efficace consiste nell’utilizzare due lampadine da 3 candele 230 volt (tipo quelle che sono dentro ai frigo) collegate in serie.

Questo metodo di rigenerazione consente di ridurre al minimo il tempo di rigenerazione e si adatta automaticamente alle esigenze specifiche di ciascun condensatore. In pratica, è come se il condensatore stesso comunicasse al circuito del rigeneratore i suoi tempi di rigenerazione. Sebbene il processo possa sembrare simile al caricamento del condensatore a corrente costante, le prove effettuate precedentemente al 2013 dimostrano che la rigenerazione con treni di impulsi risulta altrettanto efficace, ma molto più rapida rispetto al metodo a corrente costante. Pertanto, l’utilizzo di treni di impulsi per la rigenerazione dei condensatori offre un approccio più efficiente e controllato rispetto ai metodi tradizionali. Si tratta di un approccio innovativo che combina la rapidità di rigenerazione con la sicurezza e l’efficacia nella gestione della corrente di carica. Questo permette di ottenere una rigenerazione ottimale dei condensatori elettrolitici, risparmiando tempo e minimizzando il rischio di danni.

Uno strumento indispensabile per chi ripara radio e amplificatori valvolari d’epoca

Questo strumento si rivela indispensabile per coloro che si dedicano alla riparazione e al restauro di radio e amplificatori valvolari d’epoca. Quando ci si propone di riportare in funzione un apparecchio che è rimasto inattivo per decenni, spesso è necessario procedere alla rigenerazione dei vecchi condensatori elettrolitici, qualora siano ancora utilizzabili. Grazie a questo strumento, ho avuto la possibilità di ripristinare il funzionamento di condensatori datati anche agli anni ’40, garantendo così un corretto funzionamento degli apparecchi. Nel caso degli amplificatori audio, la conservazione, ove possibile, dei vecchi condensatori elettrolitici potrebbe essere essenziale per preservare il suono originale dell’amplificatore, evitando di compromettere la sua qualità sonora con sostituzioni superficiali.

La costruzione

Mi sono quindi dedicato a eseguire alcuni esperimenti sulla breadboard utilizzando un microcontrollore Picaxe 18M2 come unità di elaborazione del circuito.

Ho sviluppato uno stadio analogico utilizzando un trasformatore flyback come parte centrale del circuito. Per il trasformatore, ho utilizzato un piccolo trasformatore d’uscita recuperato da una radiolina a valvole demolita, invertendo la sua polarità. Il FET di potenza viene collegato al secondario per l’ingresso, mentre l’alta tensione viene prelevata dal primario. Il microcontrollore Picaxe 18M2 si occupa di generare treni di impulsi in PWM per controllare il FET e di misurare la tensione ai capi del condensatore durante la carica, oltre alla corrente assorbita.

In pratica, il flyback è in grado di generare oltre 700 volt CC a vuoto, con una corrente di corto circuito di 30mA. Tuttavia, l’MCU limita la tensione massima raggiunta dal condensatore durante la carica e, soprattutto, limita la corrente media assorbita a 10mA. L’ampiezza e la corrente degli impulsi rimangono costanti, ma varia la durata dei treni di impulsi e la pausa tra un treno e l’altro. Questo metodo, apparentemente aggressivo, sembra funzionare molto bene. Sono riuscito a rigenerare diversi condensatori scelti a caso dalla scatola dei “cadaveri”, incluso un paio di quelli che non erano ripresi con il vecchio rigeneratore a corrente costante, e in tempi abbastanza brevi.

Vediamo un pò la costruzione dell’apparecchio: Ho preso un trasformatore a caso nel mucchio della roba di recupero…

Durante il funzionamento il trasformatore che ho utilizzato emetteva rumore. Per risolvere il problema, ho preso la decisione di immergerlo nella cera per renderlo più silenzioso. Dopotutto, il povero trasformatore non era stato progettato per gestire 15 watt di onde quadre modulate, con correnti che raggiungevano quasi 1A sul secondario. È stato un modo divertente per affrontare il problema e ottenere un funzionamento più tranquillo.

Sono rimasto sorpreso di quanto fosse efficace l’immersione nella cera per ridurre drasticamente il rumore emesso dal circuito. Il risultato è stato così soddisfacente che il rumore è praticamente scomparso. Ho voluto condividere con te una foto del circuito assemblato su una breadboard a 1000 fori, prima che fosse alloggiato in un involucro definitivo. Come puoi vedere, i LED sono collegati in modo provvisorio per scopi di testing.

Ecco lo schema (clicca per ingrandire):

Clicca qui per scaricare lo schema in formato PDF: rigeneratore.pdf

Riporto qui sotto il sorgente del firmware in basic (si è vero non mi piace il Basic e oggi preferisco arduino e il linguaggio C)

; Sorgente del rigeneratore di condensatori, versione 1.1v, www.sb-lab.eu, questo programma e' sottoposto a licenza GPL v.2

#no_data
#picaxe 18m2

setfreq m16 ; frequenza della CPU a 16mhz

symbol pwmdri = B.3
symbol caricaled = C.3
symbol volt_pin = B.2
symbol tensione = b0
symbol preset = b1
symbol speed = b2
symbol corrente = b3
symbol ritardo = b4
symbol volano = b5
symbol noblinc = b6
symbol nvolte = b7
symbol pin150 = pinB.4
symbol pin200 = pinB.5
symbol pin250 = pinB.6
symbol pin300 = pinB.7
symbol pin350 = pinC.6
symbol pin400 = pinC.7
symbol pin450 = pinC.0
symbol pin500 = pinC.1
symbol rl = C.2
symbol pulsante = pinC.5
symbol amp_pin = B.1
symbol low_led = B.0

; routines per la taratura della parte analogica (pin500 e pin450 collegati al +5v)
if pin500 = 1 and pin450 = 1 then
	goto tara
endif

; stato di riposo, attende che venga premuto il tasto start/stop
main:
setint off ; disattiva l'interrupt
gosub scarica
gosub hv_off
low caricaled
let nvolte = 0
wait 3
do
if pulsante = 1 then
	exit
endif
loop

; Legge quale tensione e' stata selezionata, va alla subroutines di preset, poi avvia il loop rigenera
seleziona:
wait 3

setint %00100000,%00100000 ; setta l'interrupt che permette di fare lo stop immediato del processo di rigenerazione in qualsiasi momento venga premuto il tasto start/stop

do
if pin150 = 1 then
	gosub v150
elseif pin200 = 1 then
	gosub v200
elseif pin250 = 1 then
	gosub v250
elseif pin300 = 1 then
	gosub v300
elseif pin350 = 1 then
	gosub v350
elseif pin400 = 1 then
	gosub v400
elseif pin450 = 1 then
	gosub v450
elseif pin500 = 1 then
	gosub v500
else
	gosub v100
endif
gosub rigenera
loop

; inizia il loop di rigenerazione del condensatore
rigenera:
let noblinc = 0 ; serve a evitare il blinc del led giallo (basso assorbimento) nei primi istanti di carica
let volano = 150 ; serve a dare una prima botta di carica che dura tot millisecondi (tanti quanti il valore specificato)
		 ; prima del primo campionamento degli adc, per evitare che il processo si fermi con un'errore di condensatore non connesso

do
let corrente = 0 ; azzera i registri corrente e tensione
let tensione = 0
low low_led ; spegne l'indicazione di basso assorbimento
high caricaled ; accende il led che indica l'inizio della carica del condensatore da rigenerare
gosub hv_on ; attiva l'alta tensione
pause volano ; fa una pausa, con l'alta tensione attiva, prima di campionare tensione e corrente, il valore viene cambiato con quello del preset alla fine del primo loop

readadc amp_pin, corrente ; campiona i valori analogici di corrente e tensione con l'adc a 8 bit
readadc volt_pin,tensione

if corrente > 100 then ; se la corrente supera il valore impostato spegne il generatore di alta tensione
	gosub hv_off
	pause 5
elseif corrente < 50 then ; se la corrente e' al di sotto del valore impostato entra nello stato di errore condensatore non connesso
	gosub hv_off
	low caricaled
	gosub scarica
	do
		high low_led
		wait 1
		low low_led
		wait 1
	loop
elseif corrente < 95 and noblinc > 5 then ; se la corrente e' al di sotto del valore impostato accende il led giallo che segnala il basso assorbimento, ma solo dopo 5 cicli del loop
	high low_led
elseif tensione > preset and corrente > 50 then ; se il valore di tensione misurato e' superiore al preset e la corrente assorbita non e' al di sotto del valore specificato termina il ciclo con la scarica del condensatore
	gosub hv_off
	wait 5
	low caricaled
	gosub scarica
	return
endif

let noblinc = noblinc +1 ; incrementa il registro antiblincamento
let volano = ritardo ; al termine del primo loop imposta il valore del registro volano dal valore lungo necessario al primo campionamento a quello corto impostato nel preset
loop

; preset per le varie tensioni

v100:
let preset = 66
let speed = 2
let ritardo = 5
return

v150:
let preset = 100
let speed = 0
let ritardo = 2
return

v200:
let preset = 135
let speed = 0
let ritardo = 2
return

v250:
let preset = 165
let speed = 0
let ritardo = 2
return

v300:
let preset = 195
let speed = 0
let ritardo = 2
return

v350:
let preset = 218
let speed = 1
let ritardo = 5
return

v400:
let preset = 237
let speed = 1
let ritardo = 5
return

v450:
let preset = 246
let speed = 1
let ritardo = 5
return

v500:
let preset = 254
let speed = 1
let ritardo = 5
return

; routines di scarica del condensatore
scarica:
low low_led
; attivo il rele' che scarica il condensatore sulla lampadina
high rl
; controllo la tensione fino a che si approssima a zero quindi disattivo il rele'
do
  wait 2
  readadc volt_pin,tensione
loop while tensione != 0
low rl
if nvolte = 1 then ; se sono stati fatti 2 cicli di scarica si ferma e da segnale di completo
	do
	high caricaled
	pause 250
	low caricaled
	pause 250
	loop
endif
let nvolte = nvolte + 1
return

; routines di taratura del trimmer di misura della tensione
tara:
setint %00100000,%00100000
do
gosub v500
gosub hv_on
pause 100
readadc volt_pin,tensione

if tensione > preset then
	gosub hv_off
	pause 5
endif
loop

; attiva il segnale pwm per la generazione dell'alta tensione con frequenze e dutycicle diversi in base al valore impostato nel preset.
hv_on:
if speed = 0 then
	pwmout pwmdri,66,187 ; 15khz 70%
elseif speed = 1 then
	pwmout pwmdiv4, pwmdri, 249, 800 ; 1khz 80%
elseif speed = 2 then
	pwmout pwmdiv16, B.3, 124, 250 ; 500hz 50%
endif
return

; routines di spegnimento dell'alta tensione
hv_off:
pwmout pwmdri,off
return

; routines dell'interrupt per lo stop rapido del ciclo di carica (resetta il chip).
interrupt:
reset

NOTA IMPORTANTE sul trasformatore: È fondamentale considerare che non tutti i trasformatori sono adatti per questo circuito specifico. Per effettuare il test del trasformatore e calibrare il trimmer che limita la tensione a 500 volt, ho inserito una procedura nel microcontrollore che funziona nel seguente modo: prima di accendere il circuito, è necessario scollegare il commutatore rotativo che seleziona le diverse tensioni e collegare i due pin corrispondenti ai passi 450V e 500V del commutatore a +5V. Successivamente, si alimenta il circuito. Durante la fase di avvio, se il microcontrollore rileva che questi due pin sono in alto, attiva il generatore di alta tensione alla massima potenza, senza limitazione di corrente.

All’uscita del trasformatore, invece di collegare un condensatore, è necessario collegare una resistenza di carico ESATTAMENTE da 50k, in grado di dissipare almeno 5 watt per una decina di secondi senza surriscaldarsi. Utilizzando questa configurazione, regolate il trimmer fino a misurare con un tester una tensione di 500 volt ai capi della resistenza. Se la tensione risulta significativamente più bassa e non riuscite ad aumentarla, provate a invertire i capi del secondario o del primario del trasformatore. Poiché la forma d’onda dell’onda quadra è asimmetrica, la rettificazione di una fase rispetto all’altra può causare differenze significative. Se nonostante queste modifiche non si riesce ad ottenere la tensione desiderata, significa che il trasformatore non è adatto per il circuito in questione.

Nel programma del microcontrollore, ho incluso diversi preset che corrispondono alle varie tensioni da generare, e ogni preset ha una frequenza di pilotaggio specifica. Questa scelta deriva da alcune considerazioni fatte durante lo sviluppo del circuito.

Il trasformatore di riferimento che ho utilizzato mostrava una maggiore efficienza nel trasferimento di potenza (tensione e corrente) a frequenze più basse (1 kHz). Tuttavia, a questa frequenza, il trasformatore produceva un rumore più intenso e c’era un surriscaldamento maggiore del FET di potenza. D’altro canto, a frequenze più elevate (15 kHz), la vibrazione meccanica del trasformatore era ridotta e la dissipazione di calore nel FET era minore, ma la tensione erogata non riusciva a superare i 320 volt.

Per superare questa limitazione, ho deciso di implementare diversi preset nel programma del microcontrollore. Ogni preset configura i parametri in base alla tensione desiderata. Ad esempio, per le tensioni comprese tra 150 e 300 volt, il circuito opera a 15 kHz con un duty cycle del 70%. Per le tensioni tra 350 e 500 volt, il circuito opera a 1 kHz con un duty cycle dell’80%. Infine, per la tensione di 100 volt, il circuito opera a 500 Hz con un duty cycle del 50%.

Va fatto un’appunto sul preset dei 100 volt: poiché il microcontrollore opera in modo sequenziale, generando un certo numero di impulsi al condensatore prima di misurare tensione e corrente, si è verificato che, con condensatori di capacità più piccola, il microcontrollore non riuscisse a fermare l’alta tensione in tempo. Di conseguenza, al momento del campionamento, la tensione risultava quasi sempre sopra i 160 volt. Per risolvere questo problema, ho inserito un preset che erogasse una potenza ridotta su ogni singolo impulso, in modo che, con passi di carica più piccoli, il microcontrollore avesse il tempo necessario per fermarsi prima di superare i 100 volt.

Anche se la prima taratura viene effettuata su una resistenza, è possibile apportare ulteriori regolazioni al trimmer in seguito. È possibile fare dei piccoli ritocchi al trimmer (tenendo presente che con 500 volt in uscita dal circuito ad alta tensione, si dovrebbero ottenere 5 volt in uscita dal trimmer, non di più, perché l’ADC non può leggere tensioni superiori e perché interverrebbe lo zener di protezione da 5,6 volt che protegge il chip). Questi ritocchi possono essere fatti utilizzando condensatori di prova (che siano in buone condizioni e non necessitino di rigenerazione) collegati al circuito.

Inoltre, è possibile regolare il valore del registro “preset” per modificare la tensione a cui il microcontrollore avvia la sequenza di scarica. Ho impostato tutte le tensioni in modo che superino di 5 o 10 volt il valore massimo desiderato, al fine di garantire una migliore rigenerazione del condensatore.

Potrebbe essere anche necessario modificare le frequenze e i duty cycle impostati nella routine “hv_on:” se si cambia il trasformatore. È necessario effettuare delle prove per determinare i valori ottimali. È importante assicurarsi che il circuito sia in grado di fornire la tensione desiderata con una corrente di 10mA, aumentando gradualmente il valore delle resistenze.

Nel caso in cui il microcontrollore si fermasse dopo il primo impulso di carica, indicato dal lampeggio del led che segnala la mancata connessione del condensatore, è possibile regolare il registro “ritardo” nei preset. Questo registro indica il ritardo, a partire dall’accensione di HV, prima che venga effettuato il campionamento della tensione e della corrente di carica. Se il ritardo è troppo breve rispetto alla risposta in frequenza del generatore di alta tensione e dei filtri passa-basso presenti all’uscita dei partitori, il campionamento potrebbe avvenire prima che sia stata formata una tensione misurabile sul partitore di corrente (costituito da una resistenza da 220 ohm collegata tra massa e il terminale negativo del condensatore). Ciò potrebbe portare il programma a ritenere che non sia presente alcun condensatore, saltando alla routine di gestione degli errori.

Qualche trucco

Durante i miei anni di utilizzo di questo rigeneratore, ho imparato qualche piccolo trucco che potrebbe esservi utile. Se state rigenerando un vecchio condensatore, come quelli presenti in amplificatori vintage o radio d’epoca, e notate che la tensione smette di salire e si stabilizza ad un certo valore, e magari dopo qualche minuto il condensatore si riscalda leggermente, vi consiglio di interrompere il processo di rigenerazione premendo il pulsante start/stop. Lasciate trascorrere alcune ore e, nel ciclo successivo, è molto probabile che la rigenerazione del condensatore possa completarsi con successo. Se la rigenerazione si blocca sempre alla stessa tensione, allora significa che il condensatore è da considerare non più utilizzabile.

Al termine del processo di rigenerazione, è sempre consigliabile misurare la capacità e la resistenza equivalente in serie (ESR) del condensatore rigenerato per verificarne i parametri. Per essere sicuri dell’affidabilità del condensatore, vi consiglio di effettuare un ulteriore ciclo di rigenerazione dopo 24 ore. Se il condensatore è in buone condizioni, si caricherà rapidamente e senza sforzo, come un condensatore nuovo. Tuttavia, se notate che la carica è nuovamente lenta (visto raramente), come nel primo ciclo di rigenerazione, allora il condensatore non è affidabile e va scartato. Naturalmente, se notate perdite di liquido attuali o passate, è necessario scartare il condensatore.

Modifica effettuata nel 2023 per gestire condensatori molto grossi

Per risolvere il problema dello spazio all’interno della scatola metallica, ho optato per un’alternativa creativa e veloce. Ho praticato due fori sulla parte superiore della scatola metallica del rigeneratore e ho fissato due vecchi porta lampada recuperati sopra di essi. Le lampadine utilizzate hanno una potenza nominale di circa 3 candele, corrispondenti a circa 3 watt. Sebbene questa soluzione possa sembrare buffa e simile a qualcosa che si potrebbe trovare in un cartone animato di Topolino, mi ha consentito di ottenere un dispositivo utilizzabile senza dovermi impegnare troppo.

Nel video qui sotto è possibile osservare il rigeneratore mentre raggiunge la fase finale del ciclo di rigenerazione di un condensatore di grandi dimensioni da 3900uF a 500 volt. Una volta completata la rigenerazione, il condensatore viene scaricato sulle lampadine, causandone l’accensione. Non fate caso al voltmetro che ogni tanto si azzera, dovrei sostituirlo…

Il rigeneratore, nella versione firmware 1.1, esegue due cicli di rigenerazione completi prima di interrompersi, segnalando la fine del processo con un lapeggio rapido del led rosso. È fondamentale prestare attenzione durante il processo di rigenerazione, poiché ai capi del condensatore e sugli stessi terminali del rigeneratore sono presenti tensioni continue potenzialmente pericolose.

Nel caso di condensatori ad alta capacità, come quello mostrato nel video, (ma anche in caso di condensatori più piccoli) è presente una considerevole quantità di energia accumulata che potrebbe risultare letale per persone e animali, o causare esplosioni in caso di cortocircuiti accidentali. E che la corrente continua è molto più pericolosa di quella alternata.

Pertanto, è fondamentale dotare l’apparecchio di un voltmetro per monitorare costantemente la tensione ai capi del condensatore e assicurarsi di fissare il condensatore in modo sicuro, impedendo qualsiasi movimento, rotolamento o caduta accidentale.

Prima di toccare il condensatore in fase di rigenerazione, è fondamentale assicurarsi che il rigeneratore non sia in fase di carica e che la scarica sia terminata, verificando che la tensione sia prossima allo zero o effettivamente pari a zero. Nel caso di dubbi o incertezze sullo stato di carica del condensatore, è consigliabile utilizzare un tester esterno e scaricare eventuali cariche residue con uno scaricatore di condensatori come descritto nell’articolo relativo. È importante sottolineare che se si decide di costruire questo dispositivo, ci si assume ogni responsabilità, pertanto si consiglia di leggere attentamente l’articolo sull’esenzione di responsabilità prima di procedere.

Continue reading...

6 Responses to Rigenerare condensatori elettrolitici

  • La riparazione di amplificatori valvolari è un’operazione che richiede precisione, conoscenze tecniche approfondite e soprattutto l’uso di metodi adeguati. Affidarsi a tecniche improvvisate e empiriche può portare a risultati ingannevoli e potenzialmente dannosi. Solo perché un amplificatore emette suono dopo un intervento non significa che stia funzionando correttamente o al massimo delle sue capacità.

    Quando si tratta di componenti critici come i condensatori, è fondamentale non lasciar nulla al caso. Se non vengono sostituiti, devono almeno essere rigenerati in condizioni controllate, e successivamente sottoposti a verifiche rigorose tramite strumenti come un ponte LCR per assicurarsi che abbiano valori di capacità, ESR (resistenza serie equivalente) e dissipazione entro limiti accettabili. Senza queste verifiche, non c’è modo di sapere se il dispositivo stia davvero funzionando come dovrebbe o se, al contrario, ci si ritrovi con un apparecchio che emette suoni in modo subottimale.

    Chi ripara in modo approssimativo rischia di ascoltare un amplificatore che produce botti nelle casse, senza sapere cosa si sia danneggiato nel mentre. Questi problemi non solo compromettono l’esperienza di ascolto, ma potrebbero anche causare danni irreparabili all’apparecchio, come la bruciatura di trasformatori o resistenze, con conseguenze disastrose.

    Il messaggio è chiaro: riparare un amplificatore valvolare non è un gioco e va fatto con criterio. Le tecniche improvvisate non sono solo inutili, ma pericolose. Per questo motivo, utilizzare dispositivi specializzati per la rigenerazione dei condensatori e seguire protocolli di verifica accurati è essenziale per garantire la longevità e le prestazioni ottimali del proprio amplificatore.

    Le pagine di questo sito sono colme di articoli che mostrano riparazioni di apparecchi spesso in gravi condizioni, con trasformatori bruciati e quant’altro, non crediate che molti di questi che ho riparato non siamo passati per trattamenti approssimativi come questi.

  • Con il Variac sono andato su lentamente 50-75-100-…-200, intervallati da tempi consistenti per permettere ai condensatori di scaricarsi.
    E mi è andata bene!
    Ora il Cochet AL-2 suona e migliora di giorno in giorno (anche se scalda come un forno!).
    Da notare come ai primi spegnimenti faceva il “botto” sugli altoparlanti, mentre ora non lo fa più.

  • È essenziale monitorare la corrente assorbita da ogni singolo condensatore durante la rigenerazione; altrimenti, i risultati saranno imprevedibili. I condensatori potrebbero riprendersi, deteriorarsi, o addirittura scoppiare. Inoltre, avviare l’amplificatore senza valvole è rischioso: senza carico, la tensione in uscita dalla sezione di alimentazione potrebbe superare i limiti massimi tollerabili dai condensatori. Dopo la rigenerazione, è fondamentale verificare lo stato di salute dei condensatori con un ponte RLC. In realtà, questa verifica andrebbe fatta anche prima: se un condensatore da 100 µF misura solo 20 µF, non ha senso tentare di rigenerarlo.

  • Interessante… anche se non penso di seguire questa strada.
    Ho un Cochet AL-2 (PP di EL34) che è fermo da 15 anni e vorrei usarlo di nuovo.
    Nei prossimi giorni mi arriva un Variac e con quello devo “giocare”…
    Non penso di togliere i condensatori elettrolitici e quindi di eseguire la procedura dopo aver tolto invece le valvole.
    Ho speranze di riuscire a “ridare vita” ai condensatori elettrolitici? Farò danni?
    Grazie

  • Dipende, sulle radio d’epoca a volte non è meccanicamente comodo sostituire un vitone con un condensatore moderno, potresti non aver spazio, oppure ti tocca stare a svuotare il vecchio condensatore per metterci dentro quello nuovo, se la rigenerazione avviene con successo io non ho mai visto che poi il condensatore avesse problemi. Invece per quello che riguarda gli amplificatore audio sia hifi che quelli da chitarra elettrica, se non troppo vecchi, i condensatori si rigenerano sempre bene e misurati sul ponte mostrano anche buone caratteristiche spesso migliori di quelle di condensatori nuovi (farò un’articolo a riguardo), e la loro sostituzione a “ufo” a volte ammazza il suono dell’apparecchio. Mentre se si tratta come in questo aggiornamento di lotti di componenti di ottima fattura fermi da ua decina di anni la rigenerazione è sicuramente la strada migliore a livello economico e anche per diminuire la quantità di rifiuti che produciamo.

  • Buona idea anche se, personalmente, non lascio montati i vecchi elettrolitici. Meglio sostituire e non pensarci più. Quando passano 80 o 90 anni, ogni accensione potrebbe mandarli in corto e allora, meglio sostituire. Mia opinione ed operazione che faccio a tutte le mie vecchie radio.

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.