Riparazione Faref / Gretzen Mod. Orchestra 731

La radio originariamente si presentava con la tela dell’altoparlante stropicciata e con macchie di ruggine, l’altoparlante aveva un foro sulla membrana probabilmente provocato di un’insetto che se ne era cibato.

Il doppio elettrolitico di livellamento era staccato e penzolante, il resistore di catodo della finale audio era carbonizzato, così come anche il resistore da 1k che formava la cella CRC. Tutti i condensatori a carta erano derivati di quasi il doppio della capacità nominale, i resistori avevano invece ancora tutti valori accettabili, tranne 1. La UL84 era completamente esaurita mentre la ECC85 della sezione FM era al 50% sulla zona ” ? ” del prova valvole. La seconda MF aveva preso una botta e si era crapata la base di bachelite.

Dopo aver smontato tutta la radio e pulito per bene dalla polvere ho smontato la MF rotta e riparato la base di bachelite con colla ciano-acrilica curandomi anche di mettere dei cerottini di cartoncino sottile in quanto la colla da sola non riusciva a tenere insieme i 2 pezzi. Rimontato la MF ho smontato tutti i condensatori a carta che ho restaurato sciogliendo il catrame con la punta dello stagnatore a GAS, svuotandoli e alloggiando all’interno un nuovo condensatore al poliestere, richiudendoli poi con il loro stesso catrame. Gli elettrolitici invece li ho sostituiti completamente in quanto i nuovi non sarebbero entrati nelle carcasse dei vecchi, ho sostituito anche le resistenze bruciate e le 2 valvole esaurite dopo aver spruzzato con disossidante tutti gli zoccoli e i commutatori. Ovviamente ho cambiato anche il cordone di alimentazione.

L’altoparlante è stato rappezzato con carta di giornale e colla vinilica, il mobile in plastica nera lavato con acqua e sapone, mentre manopole e viti ad ultrasuoni. La tela dell’altoparlante è stata sostituita con stoffa di cotone grezzo (leggermente color cocciola e con puntini neri di impurità nella fibra, molto vintage).

Ritarate le MF ed eccola funzionante, la sintonia in FM è davvero pazzesca, da filo da torcere a moderni ricevitori a transistor, grazie al circuito fremodyna che equipaggia questo ricevitore quasi tutte le stazioni si ricevono tonanti e non vi è traccia alcuna del classico SHHHHH tra una stazione e l’altra o nelle stazioni con segnale più debole, di contro la gamma ricevibile è limitata a 100 forse 102Mhz, infatti negli anni ’60 la gamma FM si fermava prima dei 108Mhz che sono utilizzato ai giorni d’oggi.

Problemi di sovralimentazione: è una cosa che non avevo mai riscontrato in altri apparecchi più vecchi comuque ciò che è capitato è che la radio nel cambio tensioni prevede al massimo 220v, mentre sappiamo tutti che la rete elettrica attuale arriva a 230 (235 a casa mia). L’autotrasformatore scaldava parecchio, e anche la resistenza catodica della UL84 che a sua volta sfiorava il redplate che appariva quando la tensione di rete arrivava a 240V (simulato col variometro) e l’audio a volte diventa distorto.

Una breve indagine sui dati della UL84 mi ha detto che la massima tensione di G2 dovrebbe essere 160volt, mentre la massima corrente ammessa 73mA, in questo caso la tensione anodica ha poca importanza (200 volt). La G2 della UL84 è alimentata sulla seconda cella del filtro CRC, e la tensione era 176 volt, mentre la corrente che scorreva nella valvola era di ben 76mA ! Praticamente questi 10/15 volt di troppo che molti darebbero per irrilavanti non erano poi tanto irrilenvanti… Ho quindi fatto una piccola modifica mettendo una resistenza da 120ohm tra la raddrizzatrice UY85 e il primo condensatore della cella CRC (con anche una grossa gioia per la raddrizzatrice che si esaurirà piu lentamente), ho dovuto spostare anche il filo del primario del trasformatore di uscita dal lato condensatore della resistenza.

In questo modo l’anodica è calata a 180/190v, la G2 aveva 155volt e la corrente che scorreva nella finale era calata a 56mA e anche la resa acustica era migliorata.

Ecco alcune foto dell’apparecchio:

Continue reading...

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Single Ended di 6JZ8

Questo che presento è un progetto molto carino che già diverse persone hanno realizzato con pieno successo dal suono piacevole, ho usato ancora valvole compactron perchè sono snobbate dalle masse quando in realtà sono valvole che vanno molto bene.

Commento di una persona che ha realizzatto l’apparecchio:

Il suono semplicemente fantastico! Io non mi sarei mai aspettato tanto rumore con così pochi watt. Abito al terzo piano e mia mogli mi assicura che a tutto volume si sente benissimo dal garage! Il dettaglio è semplicemente stupendo! Corposo, audace, mai scontato. Ho avvertito qualche segno di clipping (ND GizMo: bhe considerando la potenza nominale se ci dai su volume con della musica molto pensate è normale :D), ma per fortuna non nella mia classica preferita! C’ho visto film, ed è una guduria immensa, peccato la moglie che già a meno di metà volume mi chiede di abbassare! È semplicemente sbalorditivo!

Sono troppo contento!

Angelo

Ecco lo schema (clicca per ingrandire)

Nuovo trasformatore di alimentazione, 2 induttanze aggiunte, stessi TU, stesse valvol. Raddrizzatori a vuoto, circuiteria tutta rivista. Il piano di montaggio lo farò nuovo in bachelite verniciata nera, quello attuale ha troppi fori che sarebbero fuori posto.

Ho finito di forare la piastra in bachelite, l’ho carteggiata e ci ho dato una mano di nero + 3 mani di trasparente lucido, ora aspetterò l’indurimento dei 3 strati di lucido prima di iniziare a maneggiarlo, per evitare di lasciare segni. (ovviamente il flash della macchina fotografica ha messo in evidenza tutti i granelli di polvere appoggiati al piano.

Dietro nella foto anche il foglio in ottone che farà da schermatura del circuito. Montati gli zoccoli, i trasformatori e le induttanze, schermatura ed ancoraggi.

Ho iniziato il cablaggio, la sezione di alimentazione è praticamente completata…

Il circuito è praticamente finito, sto facendo prove per aggiustare il valore di alcuni componenti per rendere quanto più precise possibile le tensioni e correnti nei punti salienti del circuito…

Completo! Qualche giorno di rodaggio delle valvole e prove di ascolto.

La prova…

Eccolo collegato, il dettaglio sonoro è eccellente, il volume sviluppato senza distorsione anche, il primo film che ha riprodotto è stato “the exorcism of emily rose” decisamente coinvolgente rispetto il fratello maggiore riesce a far sentire dettaglio ancora più fini e di basso volume, ho notato con grande gusto grilli, orologi vari, sussurri dei demoni nella testa della ragazza indemoniata, davvero bello. Se la cava bene anche con musica leggera anche se era immaginabile che fatica un pò sui brani più pesanti e diventa necessario abbassare il volume un pochino per gustarli senza clipping. I bassi sono ben presenti e gli acuti cristallini, si comporta molto bene con i passaggi di dinamica, ritornando ai film tipo una porta che sbatte all’improvviso, un vetro che si rompe, un colpo di pistola… al buio con una bella TV i salti sono assicurati (con film di paura ovviamente :D).

Dopo questa prova ho aggiunto un feedback locale, ossia la resistenza da 150k tra anodo  pentodo finale e anodo triodo, bene questa modifica è strepitosa! Il suono nei punti più impegantivi diventa raffinatissimo, e in caso di clipping su tracce impegnative il “fastidio” è molto molto limitato rispetto al circuito senza questa modifica, in alcune canzoni dove sono capitati clipping sporadici, magari transitori veloci quasi non li sentivo se non fossi stato attento. Quindi è una vera cannonata, dal basso dei suoi circa 2watt va davvero bene !

Nota: questo è un vecchio articolo ri-editato, quindi non sono disponibili tutte le strumentali e le analisi che faccio nei miei apparecchi recenti.

Continue reading...

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Ricevitore FM a conteggio di impulsi

Lo Schema (clicca per ingrandire)

Ricevitore FM

Breve Descrizione Funzionale

Iniziamo col dire che questo non è un ricevitore a reazione ma una vera e propria super eterodina a conversione di frequenza ma che non necessita di trasformatori di accoppiamento tra gli stadi a media frequenza, è quindi di facile costruzione perchè non richiede componenti difficili da reperire e non richiede nemmeno strumentazioni avanzate per la tarature e la messa a punto. E che una volta messa in funzione avrà una resa audio paragonabile a quella di ricevitori FM moderni !

La prima valvola PCF82 è allo stesso tempo un amplificatore RF (parte triodo) e un oscillatore/mescolatore (parte pentodo). Questo tipo di oscillatore/mascolatore, che dalle domande che ho ricevuto sembra pochi conoscano, è chiamato “autodyne” o “free running oscillator”,  un circuito molto in voga negli anni 30, maggiori spiegazioni tecniche sul suo funzionamento si trovano su wikipedia

Questo tipo di oscillatore soffre di un piccolo problema di deriva della frequenza durante il periodo di riscaldamento della valvola, quando accendete il ricevitore a conteggio di impulsi e sintonizzate una stazione dovrete ritoccare più volte la sintonia per alcuni minuti, ma una volta entrato in temperatura diventa veramente stabilissimo.

L’oscillatore produce un’onda sinusoidale relativamente pura tra 80 e 110 Mhz. Il segnale RF in ingresso viene miscelato con l’onda sinusoidale prodotta dall’oscillatore e produce una media frequenza (o IF) di circa 300 khz. Questo crea un problema di immagine, si sarà in grado di ascoltare la stessa stazione due volte in due punti molto vicino della corsa del variabile di sintonia (stazione-oscillatore=300khz e oscillatore-stazione=300khz). Questo non è un problema in caso di stazioni distanziate, ma può esserlo nel caso di stazioni vicine tra loro. Cercherò di risolvere questo problema in future versioni del ricevitore, ricordiamo comunque che è un progettino relativamente semplice ma anche in presenza di questo difetto la ricezione è veramente sorprendente e pulita.

L’uscita dell’oscillattore locale (pentodo PCF82) assomiglia a questo:

RFECF801out

Come mostrato dall’immagine la radio è sintonizzata su una stazione a circa 104Mhz. Si nota che l’onda sinusoidale è un pò distorta sul fronte di discesa ma non sul fronte di salita. Questo è abbastanza normale quando una stazione viene sintonizzata. La sinusoide invece appare totalmente falsata quando nessuna stazione è sintonizzata.

In ogni caso la frequenza prodotta dalla miscelazione è di circa 300kHz. Perchè 300kHz? Beh, questo è a causa del fatto che c’è bisogno di una larghezza di banda di 270kHz per ascoltare l’audio di una stazione FM senza distorsioni. Pertanto i successivi stadi sono limitati ad una banda di circa 300kHz. Tutte le altre frequenze sono filtrate. Il segnale FM a 300kHz è amplificato fino al clipping dalla prima e dalla seconda valvola EF183. La forma d’onda che sui forma in queste 2 valvole può essere vista qui:

prima-if

seconda-if

Va detto che il segnale AF all’ingresso della prima EF183 è molto debole (qualche mVpp), in ingresso alla seconda è già più forte (circa 100 mVpp) ed infine in ingresso alla terza valvola EF80 è abbastanza grande (circa 5 Vpp). Se si guarda bene si può notare che l’uscita della seconda EF183 tende già al clipping, questo è normale e non è affatto un problema, in quanto l’informazione è lo spostamento di frequenza e non l’ampiezza del segnale, anzi più il segnale è ritagliato e meglio è, l’ideale sarebbe trovare un segnale che tende all’onda quadra.

La EF80 assieme alla EAA91 e il filtro successivo hanno il ruolo di demodulatore. La EF80 prende il segnale IF a 300kHz e lo differenzia. La differenziazione avviene polarizzando il tubo in un modo che rende facile la saturazione, le figure sotto mostrano il segnale impulsato all’uscita della EF80 e il confronto tra l’ingresso e l’uscita della stessa valvola. Si può facilmente vedere che gli impulsi del segnale di uscita sono esattamente là dove inizia e finisce il fronte positivo dell’onda; questo comportamento è quello di un elemento di differenziazione.

diff1

diff2

La EAA91 poi elimina i picchi negativi del segnale impulsivo.

EAA91out

Il filtro successivo converte il segnale impulsato in un segnale audio. Il principio della conversione del segnale ad impulsi in un segnale audio è molto semplice: Un condensatore viene caricato da un diodo, molti impulsi producono una tensione elevata, meno impulsi producono una tensione più bassa. Il condensatore poi si scarica sul potenziometro e questo è il motivo per cui il potenziometro deve essere di valore relativamente alto, altrimenti il filtro verrebbe sovraccaricato.

Questa spiegazione della demodulazione è un pò semplice, la verità è leggermente più complicata: Il segnale ritagliato all’ingresso della valvola differenziatrice contiene le seguenti informazioni: tra le molte frequenze formanti l’onda quadra il segnale contiene il vettore (circa 300kHz) e l’audio (0 – 20kHz). La stessa informazione è ancora contenuta nel segnale differenziato, ma la distanza delle frequenze audio e le frequenze che formano gli impulsi è considerevolmente grande. Pertanto passando questa miscela attraverso un filtro passa-basso con una frequenza di taglio di circa 30kHz si otterrà un segnale audio piuttosto pulito.

Il mio montaggio

Ogniuno sarà libero di interpretare il montaggio come meglio crede, io per mio personale divertimento ho voluto usare quasi esclusivamente materiale di recupero, quella roba che uno che ripara radio d’epoca ha sempre da parte ma non usa mai, nel mio schema appare addirittura l’uso di un’autotrasformatore per alimentare il circuito, in puro stile anni 50/60. Ovviamente questa soluzione richiede esperienza nel maneggiare le cose sotto tensione e richiede anche di inscatolare in modo ben isolato l’apparecchio se si desidera usarlo regolarmente, se lo avete a disposizione o se siete poco esperti consiglio caldamente di usare un trasformatore normale, con il primario isolato dai secondari. Per chi non avesse capito bene: il telaio è connesso a un capo della rete elettrica !

Ho usato solo valvole TV con i filamenti adatti all’accensione in serie, le EF183, EF80 e la EAA91 sebbene abbiano la sigla che inizia per E e non per P hanno la corrente di filamento a 300mA e da datasheet sono adatte all’uso in serie, quindi possono essere collegate tranquillamente in serie con le altre (PCF82, PCL86, PY82), per ottenere i 65volt che erano necessari per accendere i filamenti in serie delle valvole ho ribaltato l’autotrasformatore, ossia ho collegato a massa il filo che corrispondeva ai 220volt del cambio tensione e collegato lo 0 all’altro capo della presa elettrica, quindi il filo che corrispondeva ai 140volt del cambio tensione in questo modo diventa una presa a 80volt, poi ho posto in serie ai filamenti una resistenza da 47/50ohm (di adeguato wattaggio) dove cadono i 15volt di troppo e che funziona anche da protezione delle valvole impedendo un riscaldamento troppo rapido dei filamenti stessi.

Ovviamente se avete a disposizione un secondario a 6,3volt nessuno vieta di usare la ECF82 / ECL86 / EY82 al posto delle P, poste in parallelo a tutte le altre. Diciamo solo che le valvole P si trovano più facilmente.

La tensione di alimentazione del circuito viene prelevata direttamente dal punto dove entra il capo della rete elettrica non a massa e mandata alla placca della PY82 per essere raddrizzata (se usate la PY82/EY82 è importante porre la resistenza da 120ohm in serie, per valvole diverse attenetevi ai datasheet delle stesse). Se avete un trasformatore isolato serve un secondario a circa 220volt. L’induttanza da 8H che appare a schema non è altro che un trasformatore audio SE che mi era venuto male, inutilizzabile in audio. Ho usato l’avvolgimento primario di questo trasformatore come induttanza. Ovviamente la sezione di alimentazione va adattata in base a ciò che si ha a disposizione, basti sapere che: la finale audio tira 35mA di corrente a 240/250volt e il resto del circuito ha bisogno di altri 35mA con circa 200volt di tensione. Volendo potete usare anche solo un filtro CRC, senza induttanza, basta che lo calcoliate bene in modo da non avere ronzamenti in altoparlante.

Ho usato un vecchio telaio geloso svuotato come supporto per il montaggio del tutto, un condensatore variabile specifico per sezioni FM valvolari, se ne trovano anche di più grossi multisezione, variabili che erano montati su radio OM/OC/FM, basta usare una sola delle sezioni piccole per l’FM.

DSCN4953

DSCN4969

DSCN4968

DSCN4970

DSCN4971

Bobine

La bobina di sintonia è una bobina in aria e consiste in 4 spire di rame da 1,5mm di spessore avvolte su un diametro di 10mm stirata a circa 15mm di lunghezza, le 2 bobine sopra e sotto il triodo della PCF82 sono comuni bobinette neosid (quelle blu col nucleotto di ferrite dentro). Anche la bobina sotto il pentodo della PCF82 da 1mH meglio se la trovate già fatta, sempre su ferrite io non ce la avevo disponibile e ho stampato un supporto di plastica con la stampante 3D e poi ci ho avvolto del filo da 0,16 fino a raggiungere il valore che mi serviva, ma io sono matto, non fatelo 😀

L’antenna è una roba strana, ho preso una ferrite da radio AM, ci ho avvolto sopra 20 spire strette di filo di rame smaltato da 0,5mm, un capo a massa, una presa alla terza spira entra nel circuito il resto delle spire non va da nessuna parte, facendo prove poi ho visto che ricevevo bene le stazioni basse a quasi nulla quelle alte, ho quindi iniziato a tirare via una spira alla volta da quelle rimaste libere e vedevo che man mano la situazione in alto migliorava, trovato il punto di equilibrio dove riuscivo a ricevere tutta la gamma FM ho fermato il rame sulla ferrite con del tubo termorestringente. Scordatevi il classico pezzo di filo, con quello riceverete solo del gran fruscio e basta.

Il Mobile

DSCN4979

DSCN4986

DSCN4990

DSCN5003

DSCN5004

Note

Sono partito dallo schema presentato dal sito linkato a inizio pagina, ho copiato le foto dell’oscilloscopio (che riferiscono all’uso delle EF80 come IF, con le 183 le onde squadrano di più) e tradotto parte del suo testo sulla spiegazione funzionale del circuito. Rispetto la sua realizzazione ho apportato diverse modifiche: ho usato la PCF82 al posto della 80, con la 80 la ricezione è veramente molto poco sensibile e si ricevono quasi solo emittenti vicine o che arrivano con segnali molto forti. Nello schema originale usa le EF80 anche per i 2 stadi IF, ma come lui stesso spiega più questi stadi guadagnano e squadrano l’onda, migliore sarà l’audio demodulato, le EF183 guadagnano praticamente il doppio della EF80 (non ha importanza che sia a mu variabile, quindi si potrebbe usare anche la EF184) e di fatti mettendo le 183 ho ottenuto un sensibile miglioramento dell’audio di diverse stazioni che si ricevevano leggermente disturbate usando le EF80. Sono invece da evitare le EF85 perchè guadagnano meno delle 80. Ho lasciato la EF80 finale perchè la sua funzione era molto specifica.

Lui usa una ECF80 come finale audio, ma non è una valvola fatta per erogare potenza quindi o la si tira dannatamente per il collo torturandola a morte o ci si accontenta di un volume audio veramente scarso, la PCL86 era una scelta più adatta ma si possono usare anche la 85 e la 82 o quello che vi pare se sapete calcolarvi uno stadio audio. Il trasformatore di uscita usato è stato recuperato da una radio che usava una EL84 come finale.

Ho omesso la seconda parte del filtro passa basso posto dopo la EAA91 che reputo inutile perchè taglia troppo la gamma acuta dell’audio, incupendo il suono.

Continue reading...

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.