Griglia Soppressore: Questa sconosciuta, come va utilizzata e altre curiosità

Scrivo questo articolo per dissipare i dubbi di diverse persone che di tanto in tanto mi fanno domande riguardo a schemi elettrici che trovano in giro realizzati e pubblicati dai soliti guru che tutto sanno (ma che in realtà non sanno niente), perchè questi schemi elettrici contengono errori grossolani e molto gravi, in questo articolo mi soffermerò in modo specifico sulla griglia soppressore. Prima di arrivare al punto saliente meglio fare un ripassino…

Questi 3 tipi di valvole differiscono per il numero di griglie interposte, al loro interno, tra catodo e anodo. Il triodo è la valvola più semplice capace di amplificazione, possiede solamente la griglia controllo. Il tetrodo è una valvola che contiene 2 griglie: la griglia controllo e la griglia schermo.

Triodo e il suo Negative Feedback Fantasma

Spiegare questa cosa per me è abbastanza ilare, ma probabilmente non tutti capiranno il perchè. All’epoca una delle maggiori limitazioni tecniche dei triodi era dovuta alla capacità parassita (effetto miller) presente tra anodo e griglia controllo, se sulla griglia è presente un segnale sulla placca si ritrova lo stesso segnale amplificato e con la fase opposta, la capacità interna tra anodo e griglia causa una retroazione negativa intrinseca 😆 che limita la massima frequenza alla quale il triodo può funzionare. Nel campo delle trasmissioni radio questo limitava le frequenze alle quali i trasmettitori e i ricevitori potevano operare.

La griglia schermo e l’effetto Dynatron

Per eliminare la capacità parassita tra anodo e griglia controllo fu interposta la griglia schermo, che proprio come dice il nome “scherma”. Essa viene polarizzata ad un potenziale positivo fisso impedendo che il segnale presente sulla placca retroceda sulla griglia controllo, fu realizzato così il tetrodo. I tetrodi però soffrivano di un difetto: la griglia schermo ha l’effetto di accelerare il flusso di elettroni in corsa verso l’anodo, elettroni che quando impattano ad alta velocità (immaginate tanti proiettili sparati nell’acqua che alzano un sacco di schizzi) provocano un’emissione di elettroni che si staccano dalla placca avviando un’emissione elettronica che esce dall’anodo e viene poi attirata e assorbita dalla griglia schermo formando una corrente inversa tra l’anodo e lo schermo.

Questo effetto viene chiamato comunemente emissione secondaria, il nome specifico è effetto dynatron. L’effetto dynatron causa parecchi problemi di funzionamento nel tetrodo che vanno dal rumore ad avere una zona delle curve a pendenza negativa che causa instabilità e auto oscillazione spontanea della valvola, tanto che all’epoca fu realizzato anche un circuito oscillatore chiamano Oscillatore Dynatron che sfruttava questo difetto dei tetrodi. Un’esempio di tetrodo può essere la UY224 di cui potete osservare le curve qui sopra. Nonostante la parentesi dell’oscillatore dynatron (che di fatto non è che servisse molto visto che esistevano diversi altri modi per far oscillare una valvola) i problemi dovuti all’effetto dynatron erano molto fastidiosi e i tetrodi scomparvero molto presto.

Il Pentodo

Dopo il tetrodo venne inventato il pentodo da Gilles Holst e Bernhard DH Tellegen nel 1926, esso può essere considerato un perfezionamento del tetrodo. A questo viene aggiunta una terza griglia (chiamata volgarmente G3) tra la placca e griglia schermo, denominata griglia soppressore. L’azione della griglia soppressore si manifesta essenzialmente nei riguardi dell’emissione secondaria, riuscendo a sopprimerne o per lo meno ad attenuarne gli effetti. Di norma, questo elettrodo appare collegato al catodo, internamente od esternamente; in questo secondo caso tramite apposito piedino presente sullo zoccolo che, rendendolo indipendente, permette di utilizzare il pentodo, se necessario, come triodo, unendo alla placca le due griglie soppressore e schermo.

L’accoppiamento elettrico fra catodo e griglia soppressore consente la presenza del potenziale catodico nella zona in cui appaiono gli elettroni dell’emissione secondaria, senza provocare assorbimenti di corrente e senza rendere necessario alcun accorgimento di alimentazione atto a procurare una specifica tensione. Dunque, la griglia soppressore deve considerarsi a potenziale zero o di massa quando rimane internamente collegata al catodo, oppure quando vengono cortocircuitati i relativi piedini sullo zoccolo. Inoltre, la presenza di questa griglia riduce ulteriormente la capacita griglia-placca rispetto alla valvola tetrodo, con una accentuata riduzione del problema dell’accoppiamento di ritorno, ossia di retroazione interna.

Essendo la placca positiva rispetto al catodo e risultando questo connesso alla griglia soppressore, quest’ultima rimane negativa nei confronti dell’anodo. Ne consegue che gli elettroni dell’emissione secondaria, emessi dalla placca, vengono respinti dalla griglia soppressore e rinviati sulla placca. Si evita in tal modo la corrente inversa tra anodo e schermo, anche se la tensione allo schermo eccede momentaneamente quella di placca. Tutte queste sono le ragioni per cui il pentodo ha avuto una cosi larga applicazione nei circuiti di amplificazione.

Il tetrodo a fascio

L’invenzione del pentodo fu brevettata e i detentori di questo brevetto richiedevano Royalty molto salate alle case produttrici che volevano realizzare pentodi, così alcune case decisero di aggirare il brevetto della terza griglia inventando il tetrodo a fascio. Nel tetrodo a fascio la terza griglia è sostituita da uno schermo deflettore in lamiera con 2 finestre che fanno in modo di incanalare gli elettroni in un fascio concentrato, gli elettroni dell’emissione secondaria che non tornano indietro paralleli al fascio ma con direzioni diverse incontrano lo schermo non riuscendo così a creare problemi, nelle 2 immagini qui sotto si può vedere la costruzione interna di un pentodo e di un tetrodo a fascio a confronto, e i 2 relativi simboli schematici.

Tetrodo a fascio Pentodo

Da notare che dopo i primi tempi il simbolo grafico specifico del tetrodo a fascio fu usato poco e sostanzialmente sia pentodi che tetrodi a fascio venivano disegnati negli schemi elettrici con il simbolo generico del pentodo, quindi non è infrequente vedere schematizzate le KT88 (tetrodi a fascio) con il simbolo di un pentodo, anche perchè alla fine si possono dire equivalenti in quanto hanno ottenuto lo stesso risultato in 2 maniere differenti.

Attenzione ai guru che non conoscono la Griglia Soppressore

Come ho scritto sopra la maggior parte dei pentodi e dei tetrodi a fascio hanno la G3 internamente collegata al catodo, quindi non direttamente accessibile, ma non tutte! Alcuni pentodi hanno la G3 collegata a un pin per conto suo (come la EL34 ad esempio) e non dispongono di nessuna connessione interna, questo per vari motivi… uno potrebbe essere che nel processo di fabbricazione venisse più comodo collegare la G3 a un pin piuttosto che fare il ponte interno alla valvola, un’altro che fosse prevista la connessione a triodo integrale dove anche la G3 viene collegata all’anodo, oppure la stessa G3 poteva avere un’uso alternativo; posso citare la 6BA6 che è un pentodino a 7 pin usato come media frequenza in tante radioline anni 50/60 dove alla G3 veniva applicata spesso la tensione negativa del circuito CAV per variare il guadagno della valvola oppure la 307A che è un pentodo trasmissivo in cui era prevista la possibilità di applicare segnale audio alla G3 per effettuare la modulazione di ampiezza di una portante RF che entrava nella G1…

In ogni modo qualunque sia la motivazione tecnica o l’uso alternativo della G3 essa va sempre correttamente collegata… NON LASCIATA SCOLLEGATA! FLOTTANTE! con la valvola libera di impazzire, oscillare o fare altre cose strane, e mi riferisco a chi ha sfornato negli anni e continua a sfornare schemi con la EL34 e il suo PIN1 (G3) scollegato da schema, con la gente che mi manda email per comprare trasformatori per realizzare siffatti schemi (la presenza di un’errore così grave è inqualificabile e dovrebbe mettere in dubbio la bontà dello schema nella sua totalità) io oggi ho 41 anni e sapevo che la G3 in questi casi andava collegata esternamente già quando ne avevo 13. Perchè i newbye che realizzano questi schemi, la G3 della EL34 la vedono scollegata da schema e la lasciano scollegata anche nel loro montaggio! Una persona una volta mi ha chiesto come mai quando accendeva l’amplificatore con le EL34 che aveva realizzato da schema che mi aveva allegato in email il sintonizzatore FM del suo impianto risultava disturbato! Se trovate una schema elettrico con la EL34 e pin1 scollegato cestinatelo.

Per curiosità ho tentato di acquisire con utracer le curve di una EL34 con la G3 lasciata sconnessa, mi immaginavo di vedere curve tutte storte e invece l’acquisizione è impossibile perchè ogni volta la valvola prende a oscillare e blocca la CPU di utracer con conseguente errore sul computer.

Curiosità: Suppressor Hacking

Ho chiamato “Suppressor Hacking” una tecnica già nota tra diversi appassionati nel mondo che giocando con un tracciacurve hanno scoperto che polarizzando la G3 con una tensione leggermente positiva, invece di collegarla al catodo, si riesce ad aumentare la linearità dei pentodi, abbattendo la corrente di G2 nella parte a sinistra del grafico e raddrizzando le curve della placca, questa cosa non è documentata in nessun datasheet ufficiale (che io sappia) e per essere messa in pratica richiede per forza di avere un tracciacurve perchè va trovata la tensione ottimale da applicare alla G3, infatti se troppo positiva la G3 comincia a rubare elettroni che non giungeranno mai alla placca riabbassando le curve di placca ed eliminando ogni vantaggio.

Già in questo articolo ho spiegato come ho ottenuto un’incremento di circa 1 watt nella potenza di un finale SE con valvola 5C15 (equivalente della 307A) e riporto qui le curve nei 2 modi…

G3 = 0volt G3 = +40volt

Valvola 6CL6

G3 = 0volt G3 = +30volt

In entrambe i casi presi di esempio la leggera polarizzazione positiva della G3 ha sortito un buon miglioramento del comportamento elettrico delle valvole nella zona dove la tensione è più bassa. Quando avrò tempo e se mi ricorderò acquisirò anche le curve della EL34 e le aggiornerò a questa pagina. PS: questo trucco sembra funzionare solamente con i pentodi e non con i tetrodi a fascio dove è sempre consigliabile collegare la G3 (o meglio il deflettore) al catodo.

La G3 e la connessione a triodo

Sebbene molti siamo abituati a connettere solo la G2 all’anodo nella connessione a triodo di un pentodo, quando si ha a disposizione la G3 libera su un piedino è preferibile connettere anch’essa all’anodo invece di connetterla al catodo, questo provoca una leggera diminuzione della resistenza interna del triodo ottenuto, nella gif animata qui sotto si possono vedere le curve di una EF86 connessa a triodo A+G2 e la stessa connessa A+G2+G3, la differenza è piccola ma visibile. Quando viene connessa anche la g3 all’anodo la pendenza delle curve diminuisce leggermente.

Emissione secondaria nei triodi

Anche i triodi soffrono di emissione secondaria anche se in questi ultimi gli effetti destabilizzanti dell’emissione secondaria non sono presenti in quanto non c’è una griglia schermo “positiva” da infastidire ma solo una griglia controllo a potenziale negativo che respinge gli elettroni. In ogni modo l’emissione secondaria nei triodi può causare rumore. Diverse tecniche sono applicate ai triodi per limitare questo fenomeno che vanno dal ricoprire le placche con materiale carbonioso (grafite) che microscopicamente parlando sono porosi come una spugna e quindi intrappolano facilmente gli elettroni che cercano di scappare, alle placche “mesh” formate cioè da una retina invece che da una lamiera chiusa fino a strani ibridi chiamati triodi a fascio.

Con l’avanzare della tecnologia e l’innalzamento delle frequenze radio i pentodi nati inizialmente per spingersi a frequenze alle quali i triodi non riuscivano a lavorare vennero in parte sostituiti da triodi miniaturizzati concepiti per lavorare a frequenze altissime ma con tassi di rumorosità molto inferiori (tante griglie producono più rumore) rispetto quelle dei pentodi, peculiarità che è necessaria quando si vuole amplificare un segnale debolissimo come quello captato da un’antenna FM o TV. Non a caso tutte le radio a valvole dotate di FM utilizzano un doppio triodo ECC85 nel tuner. I triodi a fascio sono l’espressione massima di questo settore dell’elettronica valvolare, sono apparsi nell’era TV, utilizzati esclusivamente nei tuner UHF dove il rumore dell’emissione secondaria rischiava di rendere impossibile la ricezione. Sono triodi ma hanno lo schermo deflettore come un tetrodo a fascio, alcuni esempi di queste valvole sono la EC95, EC97, EC900 (e relative versione P con il filamento per accensione serie). Qui sotto lo schema interno riportato sul datasheet della PC900.

Continue reading...

3 Responses to Griglia Soppressore: Questa sconosciuta, come va utilizzata e altre curiosità

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Il Triodino 4 – Single Ended 300B Stereofonico – Progetto definitivo

Dopo numerose richieste di un’upgrade del Triodino 3 da perte di utenti via email pubblico questo progetto che ho voluto chiamare Triodino 4. Premessa il Triodino 3 è un progetto che circola liberamente su internet da forse 2 decenni, è stato fatto e rifatto in tutte le salse con modifiche sempre molto marginali al progetto e di base permettetemi di dire che il Triodino 3 è un progetto fin troppo semplice e con tale estrema semplicità si trascina dietro anche delle limitazioni. Il Triodino 3 in buona sostanza è una 300B con il proprio stadio driver e basta, una bozza di circuito.

Principali limitazioni del triodino 3:

  1. Ha bisogno di un preamplificatore perchè l’ingresso richiede uno swing di ben 6Vpp di segnale per essere pilotato quando la maggiorparte delle sorgenti sonore hanno un livello di uscita inferiore alla metà.
  2. L’alimentazione in alternata del filamento per quanto si possa fare lascia sempre un residuo di ronzio in altoparlante che diventa udibile se si hanno casse ad alta efficienza.
  3. La configurazione in selfbias non rende un suono pulito come potrebbe una a bias fisso, la qualità del condensatore di bypass diventa importante, e ci si trova una grossa resistenza per ogni 300B che scalda come un ferro da stiro dentro al telaio.
  4. Lo smorzamento sviluppato da questo circuito zero feedback si attesta ottimisticamente parlando attorno a un fattore 2, quindi il triodino 3 ha problemi di controllo delle basse frequenze nel rispetto del diffusore, questo vuol dire che abbinato a determinati tipi di casse acustica potrebbe creare un suono con bassi gonfi.

Ho quindi preso la bozza che è il triodino 3 e completato il lavoro arrivando ad un circuito che cura tutti gli aspetti, essendo la 300B una valvola costosa e prestigiosa non ho risparmiato niente, quindi questo è un progetto senza compromessi, qui sotto lo schema premium dei finali, della sezione di alimentazione e del servobias.

Le differenze con il triodino3: Il mio progetto ha come stadio di ingresso un mu-follower modificato composto da un’ottimo pentodo octal di segnale caricato con un triodo, questo stadio del circuito fornisce una sensibilità di ingresso maggiore e permette di pilotare il Triodino 4 direttamente da una sorgente audio come un lettore CD, DAC o pre Phono senza ulteriori stadi di preamplificazione posti nel mezzo (meno roba c’è migliore sarà il suono) nell’intenzione il triodino 4 è un finale integrato e può avere il suo controllo del volume.

La 300B è polarizzata a bias fisso, la regolazione del bias è effettuata da un circuito servobias che rileva la corrente di bias della finale su una piccola resistenza posta sotto al catodo e regola il negativo di griglia, questo circuito non è attraversato dal segnale audio, maneggia semplice tensione continua non interferendo in nessun modo con la resa sonora del circuito e anzi da il vantaggio di fornire un bias sempre a puntino sia quando l’amplificatore è freddo che quando si è scaldato, e regola autonomamente il bias anche quando si cambiano le valvole senza che l’utente debba mettersi li con tester e cacciavitare trimmer e potenziometri. Rispetto la soluzione di selfbias adottata nel triodino 3 il vantaggio sonoro è notevole in quanto non si ha la reattanza di un condensatore sotto al catodo, ma questo particolare ai più sarà ben chiaro, gli effetti positivi di un bias fisso sono cosa nota.

L’alimentazione dei filamenti delle 300B è fatta in corrente continua filtrata con una cella CRC per non avere ronzio residuo in altoparlante, volendo fare di più si potrebbe adottare anche una cella CLC per un suono ancora più puro, per ora mi è stato chiesto così, ma è sempre possibile fare una piccola variazione al circuito.

Siccome molta gente è ancora diffidente nei riguardi di certe cose che dico da tempo il circuito è dotato di un negative feedback disattivabile per mezzo di un’interruttore, ho calibrato il circuito per avere un basso tasso di NFB e non diventare troppo sensibile se questo viene staccato, infatti molti circuiti retroazionati se si scollega il segnale di NFB diventano troppo sensibili e la regolazione del volume diventa difficoltosa, prendono rumori etc… questo circuito richiede 3Vpp (1,1Vrms) per essere pilotato con il negative feedback inserito e 2Vpp (0,7Vrms) per essere pilato senza NFB, in questo modo spero di cominciare a fornire alle persone un’oggetto che possa finalmente dimostrare quello che dico, ossia che un circuito ben costruito non suona peggio se c’è NFB, ma solo che hai le frequenze basse più frenate e per quelli che non vogliono fidarsi possono staccarlo e avere un’amplificatore zero feedback, tanto sono sicuro che provato una volta non torneranno più indietro, i miei trasformatori non sono come quelli che fanno altri…

Ma non è tutto, il vecchio triodino 3 era alimentato da un semplice ponte raddrizzatore, i più virtuosi lo hanno modificato per essere alimentato con una valvola raddrizzatrice ma io ho voluto fare di più, per spingere la qualità dell’audio al massimo ho realizzato uno stabilizzatore di tensione a valvole, lo stabilizzatore di tensione è formato dalla coppia di una 6080 o 6AS7 valvola che molti usano in audio ma che è nata per fare esattamente il lavoro di stabilizzatore di tensione! (Dual power triode, ruggedized 6AS7G. Intended for use as series voltage regulator.) e una ECC83 come pilota della 6080, una nota per chi volesse realizzare questo progetto; la ECC83 essendo in un circuito praticamente statico non richiede di essere di altissima qualità per far funzionare bene l’amplificatore, lo dico perchè i prezzi delle ECC83 NOS non sono bassi, per questo impiego sarà sufficiente una comune ECC83 di produzione moderna. La tensione anodica stabilizzata darà all’amplificatore un suono con una marcia in più, ne godrà il microdettaglio, il palcoscenico e la tridimensionalità del suono e i soldi che risparmiate sulla ECC83 spendeteli per condensatori di qualità.

Montaggio di “R.”

“R” mi ha portato l’amplificatore per le misure di rito e le verifiche.

Si possono ammirare le 300B FullMusic con placche mesh… Per chi non lo sapesse e pensasse che siano in redplate non è così, le 300b mesh hanno le placca costruire come una reticella metallica quindi il rosso incandescente che si vede è la luce del filamento che appassa attraverso di essa e non la placca arrossata.

Piccola nota tecnica con le FullMusic il fattore DF dell’amplificatore si è attestato su di un valore di 6,0 mentre con il montaggio qui sotto dove sono state usate delle valvole Elettro Harmonix il DF si limitata a 4,4, con tutta probabilità le 300B fullmusic sono ostruire con la placca molto più vicina al catodo, il che gli conferisce una resistenza interna inferiore e da qui il maggiore fattore di smorzamento.


Prime foto del montaggio di “C.”

Ho avuto modo di mettere mano sul montaggio di “R” per la messa a punto finale del circuito, ho risolto una sofferenza della 6080 in fase di accensione con una modifica al servobias, adesso le 300B si accendono in condizione di interdizione forzata per 30 secondi circa, dando il tempo alle altre valvole a riscaldamento indiretto di andare a temperatura dopo di chè il servobias le fa partire gradualmente come succede alle altre valvole. In pratica le 300B essendo a riscaldamento diretto partono un pochi secondi, solo che lo stato di accensione graduale di tutte le altre causavano rumori e ronzii mentre l’ampli partiva e la 6080 si trovava ad erogare sovracorrenti indesiderate. Ho risolto anche qualche errore di montaggio di “R”. Nello schema del finale ho segnato i colori dei fili del primario del TU, per evitare di fare erroneamente feedback positivo e ho aggiunto una sola resistenza nello schema del regolatore di tensione.

Ecco le strumentali che ho rilevato:
Potenza 8,3Watt RMS per canale
Smorzamento DF: 4,44
Distorsione THD @ 1 watt: 0,38%
Banda passante: 10Hz / 20khz -1dB

Devo dire che il montaggio di “R” non è dei migliori, è possibile che le capacità distribuite nel montaggio abbiano pregiudicato un pò le prestazioni del circuito, sopratutto la banda passante, in ogni modo il risultato non è per niente cattivo, vediamo i grafici:

Spettro Armonico

Banda passante su carico resistivo

E su carico reattivo

Quadra a 100Hz – 1k – 10khz

Qualcuno nei commenti qui sotto aspettava di poter paragonare le strumentali con e senza NFB inserito ma purtroppo “R” che ormai “sà” non ha voluto mettere l’NFB disattivabile, ma come suona ?

Ciao Stefano

Sto ascoltando il triodino 4, che io ho chiamato Afrodite.
Devo dire, che  il risultato è abbastanza diverso dagli altri 300b s.e. ascoltati fin ora. Le voci sono sempre il live motive di queste valvole e gli acuti hanno una grana molto fine.
Quello che lascia increduli è il basso, che con solo uno smorzamento di qualche virgola superiore a 4, risulta particolarmente frenato e con un punch esaltante.
Le valvole driver utilizzate sono delle 6sj7 Ken rad nos, con involucro in metallo e la 6sn7 GTA nos Philips. Le finali sono delle volgarissime E.H.
Grande idea il servobias, che funziona benissimo, anche se credo non piacerà agli smanettoni che “devono” regolare il bias ogni quarto d’ora 🙂
Il risultato lo reputo molto buono.

Cristian
Continue reading...

4 Responses to Il Triodino 4 – Single Ended 300B Stereofonico – Progetto definitivo

  • Quello che succede agli strumenti è già ampiamente spiegato in tutti i vari articoli che ci sono sul sito, rispetto lo zero feedback aumenta lo smorzamento e vedi la risposta in frequenza sul carico reattivo che mostra dislivelli minori, cosa legata allo smorzamento, si allarga un pò la banda passante e la distorsione THD diminuisce. All’ascolto per quello che riguarda le realizzazioni ottimizzate sui miei trasformatori l’unica differenza è che senza NFB hai le basse frequenze fastidiose se abbinato a diffusori con coni importanti e/o reflex mentre la gamma media e alta sono buone, mentre con l’NFB inserito hai la gamma medio alta ugualmente buone ma anche i bassi sono più controllati.. sostanzialmente solo giovamenti e nessuna controindicazione, questa esperienza l’ho già fatta con la modifica sul music angel XD850 https://www.sb-lab.eu/music-angel-xd-850mk3-update/ che nella versione che ho ascoltato aveva addirittura un potenziometro al posto della resistenza di NFB, quindi potevi variare il tasso di controreazione da niente ad un certo massimo e tutto ciò che abbiamo sentito era solo il variare dei controllo delle basse frequenze. La cattiva fama dell’NFB si è cotruita essenzialmente dall’incapacità del grosso dei costruttori di saperlo mettere a punto e dalla non disponibilità di trasformatori di buona qualità infatti ho spiegato più volte che non è l’NFB da solo a creare un brutto suono ma quando se ne abusa o quando lo si combina con trasformatori con bande passanti troppo ristrette, in quel caso le rotazioni di fase vanno a generare tutta una serie di distorsioni che rendono poco piacevole l’ascolto… sopra questo poi ci marciano i venditori di elettroniche che fomentano l’avversione contro di esso e tutto si perpetra all’infinito come un dogma religioso.

  • Ops, “con per ora è tutto” non avevo capito che era un nuovo progetto in realizzazione… Vista la possibiltà di abilitare/disabilitare il NFB mi ero parecchio incuriosito e poter vedere le strumentali con l’unica variabile lo stato del NFB è davvero molto interessante, anche perché dove altro si possono trovare queste prove??? O uno sa farsele oppure si viene qui 🙂

  • sto aspettando che venga costruito il primo esemplare, non sono una macchina sforna soldi e sforna amplificatori 🙂 uno cmq è già in fase di costruzione.

  • E le strumentali che pubblichi sempre?

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

PP2010 – 50w EL34 HiEnd Push Pull Amplifier – Aggiornamento 2020

Riprendo questo vecchio articolo per richiesta di un cliente, i PCB originari del progetto non si trovano più da tempo e gli schemi pubblicati sul sito originale sono frammentati e poco chiari, non sono riportati i valori di tutti i componenti e viene fatto un largo uso di resistori in serie parallelo probabilmente perchè l’autore non aveva tutti i valori che gli servivano. Mi è stato chiesto quindi di ridisegnare ex novo lo schema per intero e ripulito riportando le modifiche da me apportate nel 2016 e aggiungendo un’alimentazione filtrata con induttanze. Oltre a queste modifiche ricordo, dell’apparecchio originario su cui ho lavorato, che lo sfasatore per quanto le regolavi i trimmer non riuscivi mai a farlo lavorare con i 2 rami perfettamente opposti, le 2 semionde non apparivano sfasate perfettamente di 180gradi e avevano delle deformazioni, io credo perchè si facevano lavorare i triodi della ECC83 e i 2 jfet con una corrente troppo bassa in zona non proprio linearissima, quindi ho modificato leggermente i valori delle resistenze di carico di bias per aumentare da 1 a 1,5mA la corrente di ogni ramo, quest’ultima modifica è stata provata solo su LT Spice. Ho aggiunto una resistenza per limitare leggermente il guadagno a arrotondare la sensibilità di ingresso a 2Vpp@Clip (0,7Vrms), questa resistenza poi diventa utile anche come testpoint per la regolazione del bilanciamento dello sfasatore. Qui sotto lo schema elettrico Free

Per conoscere il prezzo del set completo di trasformatori e induttanze visitare la pagina con il listino dei KIT.


Il vecchio articolo 2016

Questo che presento è il finale “PP2010” di Ciuffoli realizzato da Angelo, trovate l’articolo originale a questo Link.

DSCN6011

Purtroppo il cablaggio eseguito da Angelo non era adeguato e l’amplificatore presentava grossi problemi di funzionamento, in maniera particolare dopo aver comprato da me il SET di trasformatori Angelo mi ha contattato affermando che l’amplificatore sebbene suonasse “bene” aveva il trasformatore di alimentazione che vibrava a scaldava come un vulcano… ALT! i miei trasformatori sono realizzati a regola d’arte ed è impossibile far scaldare e vibrare un trasformatore da 400VA con un circuito che a piena potenza assorbo poco più di 300Watt.

Mi faccio rispedire il trasformatore per una verifica ma non presentava nessun problema, quindi mi faccio portare l’apparecchio e trovo un cablaggio che prevedeva la massa su un sottile filo sospeso in aria, un garbuglio per alimentare i filamenti e altri errori sparsi evunque. Aggiungo che collegare in parallelo pentodi connessi in ultralineare è generalmente fonte di problemi e oscillazioni spurie, di fatti alimentando l’amplificatore si notava subito un forte assorbimento primario, c’era l’ago dell’amperometro del variac che pulsava come un battito cardiaco con picchi oltre i 5A e l’oscilloscopio che mostrava in altoparlante una valanga di tracce ultrasoniche sovrapposte alla sinusoide che stavo iniettando, con distorsioni altissime… Questa esperienza dovrebbe essere di monito quando si legge sui vari forum qualcuno affermare che il tal apparecchio suona bene, sopratutto quando si vedono schemi o montaggi improbabili è meglio sempre dubitare del giudizio dei proprietari.

Quindi ho deciso di ripulire completamente il cablaggio dell’apparecchio e ripartire da zero, apportando alcune migliorie e testandolo bene con i miei trasformatori certamente superiori a quelli del progetto originale.

Iniziamo dal PCB del driver, lo schema è qui sotto (cliccate per ingrandire).

PP2010sch1v - modifica

Vanno eliminate dal PCB R39/40/41/42/43/44/45/46 ed R73/74/75/76/77/78/79/80 e al loro posto va messo un ponticello come da foto:

DSCN6017

Queste che ho tirato via sono le gridstop (e questo circuito funzionano anche da limitatrici della corrente di griglia, cosa che spieghero verso la fine dell’articolo) che sono importantissime ma è altrettando importante che dopo la resistenza si entri direttamente nella griglia della valvola e non che ci sia un filo più o meno lungo, quindi la gridstop va eliminata dal PCB e messa direttamente sullo zoccolo della valvola, io ho montato una resistenza da 3k3 tra il pin6 (NC) e il pin 5 (Griglia) e ho collegato il filo che proviene dal PCB al pin 6, in questo modo il segnale che esce dalla resistenza entra subito in griglia e non ci sono “fili” che possono captare disturbi a valle della resistenza e portarli dentro la valvola.

La seconda modifica che reputo di vitale importanza in un PushPull Parallelo di valvole connesse in ultralineare è porre uno snubber tra G2 e Anodo di ogni singola valvola, forse a Ciuffoli non era capitato per mera fortuna ma questa configurazione circuitale (ossia PP Parallelo + UL) è spesso soggetta a loop oscillatori tra Anodo e G2, il problema si accentua quando le connessioni del cablaggio devono essere lunghe per questioni meccaniche, ancora peggio se l’utente hobbysta non è un asso nei cablaggi, problema che si è puntualmente presentato infatti nel montaggio dell’utente.

Vediamo lo schema originale (clicca per ingrandire).

PP2010_sch6b

La modifica consiste nell’aggiungere una resistenza da 330ohm in serie a un condensatore da 270pico 630volt tra anodo e G2 di ogni valvola, come da schema:

snubber

Questi valori possono essere variati in base al trasformatore utilizzato, più la frequenza delle oscillazione è bassa più il valore di C1 va aumentato.

Vediamo la foto del cablaggio:

DSCN6018

L’ultima modifica che ho apportato riguarda l’alimentazione dei filamenti che ora è così:

modifica filamenti

Ho riferito a massa le alimentazioni delle finali, mentre ho alimentato con un unico secondario (fornito da un piccolo trasformatore extra montato per l’occasione) i filamenti delle due ECC83 e delle due ECC82. Il sollevamento da massa l’ho ottenuto prelevando 1 solo milliamper da uno delle 2 alimentazioni anodiche e ho bypassato questa tensione con un condensatore in poliestere da 820nF per evitare rumori.

Ecco la foto del cablaggio completato:

DSCN6016

Le strumentali rilevate sul mio montaggio con i miei trasformatori è i seguente:

Banda passante rilevata a 25Watt: 15Hz nessuna attenuazione ~ 80khz -3dB

La distorsione armonica sempre a 25watt rilevata è dello 0,86%, questa misura a primo impatto potrebbe sembrare peggiore di quella rilevata sull’apparecchio originale, ma in realtà è migliore perchè i grafici presenti sul sito “audiodesignguide” hanno fondo scala a -60db, mentre io mi spingo fino a -120db, quindi probabilmente il software calcola anche le armoniche che nell’altro caso erano del tutto nascoste, si può notare infatti nel grafico qui sotto che nelle mie misure il picco della seconda armonica è a -66dB e tutti gli altri sono al di sotto di tale livello, mentre nei grafici originali si vede il picco di seconda armonica a -30db ma ad una potenza superiore a quella che ho misurato io (per comodità degli strumenti a mio disposizione), posso quindi supporre che il livello distorsivo sia del tutto uguale all’originale, ma con una banda passante molto più estesa.

Spettro a 1 watt

1khz 1watt

Spettro a 25 watt

1khz 25w

Un’altra differenza che c’è sulla mia realizzazione è quello di aver ammorbidito il clipping per mezzo delle gridstop, le gridstop originali erano più piccole di quelle che ho utilizzato io da 3k3, il circuito driver usa un’inseguitore catodico (ECC82) per pilotare le finali anche in griglia positiva, aver aumentato il valore della gridstop crea una limitazione della corrente di griglia durante il picco positivo con conseguente “arrotondamento” del clipping, in pratica alle strumentali l’amplificatore portato verso i 50watt potrebbe apparire più distorto ma in pratica questo può risultare più gradevole all’ascolto sopratutto di fronte a transitori nel segnale.

Potete qui sotto la forma d’onda della sinusoide con l’amplificatore a piena potenza:

sine a 50w

Chi volesse ricalcare la caratteristica originale dovrà semplicemente montare gridstop del valore originale.

Il fattore di smorzamento che ho misurato sull’apparecchio è di 5,0 con un Rout di 1,64ohm.

DSCN6019

Continue reading...

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.