Generatore di segnale bilanciato fino a 180vpp di ampiezza – Invertitore di Fase

Mi è venuta questa idea ripensando a tutte le volte che volevo testare su tavolaccio qualche valvola finale un pò grossa, magari anche in pushpull… sempre a perdere tempo montando oltre allo stadio finale anche lo stadio driver complicandomi il lavoro inutilmente, o quando devo testare finali e pre hifi con ingressi bilanciati. I normali generatori di funzioni non hanno uscite con uno swing molto ampio e quindi non sono sufficienti a pilotare direttamente valvole finali, inoltre erogano solo segnali sbilanciati.

Per questo motivo ho progettato e costruito un circuito costituito da un’oscillatore sinusoidale a 1khz ed uno stadio ad amplificazione differenziale a stato solido seguiti da uno doppio SRRP a valvole per l’amplificazione in tensione, in modo da aver disponibile anche un’uscita bilanciata. La massa del circuito è scollegata dalla messa terra della presa elettrica in modo che possa essere usato per iniettare segnale anche dentro a radio d’epoca col telaio sotto rete, nella modalità indipendente. Sotto lo schema (clicca per ingrandire)

L’apparecchio è munito di un connettore jack anteriore che permette di collegargli il generatore di funzioni, quando un jack è connesso all’ingresso l’oscillatore interno a frequenza fissa e la regolazione del volume vengono escluse, la connessione del generatore di funzioni però fa perdere l’isolamento da rete, in quando la massa del generatore sarà sicuramente collegata a terra, ma questo poco importa in quanto col generatore di funzioni si lavora sopra apparecchi hifi che non hanno questi problemi.

Per la sezione oscillatore ho usato un normalissimo transistor BC337, il trimmer “LIN” va regolato affinchè inneschi l’oscillazione che, aiutandosi con un’oscilloscopio, va poi portata alla massima ampiezza indistorta (circa 6Vpp). Lo sfasatore è realizzato con un doppio opamp MC1458, impostato a guadagno unitario, il trimmer BAL serve a bilanciare l’ampiezza delle 2 fasi, sempre aiutandosi con l’oscilloscopio bisogna regolarlo finchè le 2 onde in uscita dal circuito a valvole sono perfettamente della stessa ampiezza, la regolazione va fatta tenendo il volume ragionevolmente sotto al massimo consentito in quanto verso il limite estremo la slinearità delle valvole potrebbe causare leggeri sbilanciamenti.

L’SRPP è formato da un doppio triodo a catodo comune 6J6 / ECC91, scelta per il guadagno e per le ridotte dimensioni e anche per riciclare il supporto semi assemblato di un vecchio progetto che era montato nel contenitore che ho utilizzato dove era presente uno zoccolo a 7 pin, comunque è ottima valvola per stadi diffenziali, nata espressamente per questo. Mentre la parte alta dell’SRPP è formato da una normale ECC82 / 12AU7.

La rete di resistenze attorno alle griglie della 6J6 funziona sia da ancoraggio per i condensatori d’uscita sia da rete di NFB locale, assolutamente necessaria per mantenere la massima linearità e abbassare il più possibile l’impedenza d’uscita dei segnali, queste resistenze vanno messe con tolleranze all’1% oppure selezionate col valore uguale.

L’ampiezza massima del segnale in uscita è di 180Vpp per ogni fase, 360 se si prendono solo  2 estremi. Qui sotto ci sono le misure che ho fatto sul segnale emesso dal circuito, considerando che non ho montato valvole di prima scelta ma roba tirata su dal cartone di quelle senza scatola mai testate dove c’è di tutto un pò e un opamp dal cassettino dove si ammucchia rumenta da 25anni il risultato non è male con una THD di 0,7% con un livello di uscita da 30Vpp, non mi interessava una perfezione estrema ma sicuramente con valvole selezionate e un opamp migliore si possono ottenere risultati stupefacenti.

Spettro 300Vpp

Il grafico di banda passante, sinceramente non mi soddisfa molto e penso la colpa sia dell’opamp, appena avrò tempo faccio un’upgrade e ripubblico i risultati…

Il comportamento con le onde triangolari e quadre è eccellente.

Foto del montaggio…

Continue reading...

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

Reverse RIAA attivo con isolamento galvanico – “pickup simulator”

Lo schema che allego è quello di un piccolo circuito reverse RIAA attivo con isolamento galvanico ottenuto per mezzo di un piccolo trasformatore LT700 nato per utilizzo nelle radioline a transistor e ancora facilmente acquistabile su numerosi siti internet. Il circuito è un vero e proprio simulatore di pickup che vi permette di collegare un generatore di funzioni o un’altra sorgente audio direttamente in un’ingresso phono e visto la sua bassissima impedenza di uscita può essere connesso sia ad un’ingresso MM che ad uno MC.

Sono arrivato a costruire questo circuito come “accessorio” del mio analizzatore ISDS2062B, infatti risulta abbastanza difficile interfacciare il DDS e la sonda stessa dell’ISDS ad un’ingresso phono in quanto il DDS e la sonda stessa sono al limite minimo dell’ampiezza erogabile/misurabile e il rumore di fondo porta a misurazioni imprecise e talvolta anche i giri di massa ci mettono la loro, ho quindi costruito in circuito nel quale potessi sparare il segnale del DDS ad un’ampiezza abbastanza alta da rendere il rumore accettabile e il segnale stesso misurabile agilmente dalla sonda (durante la misura sweep il canale 1 dell’oscilloscopio va connesso direttamente al segnale del DDS). L’LT700 è stato utilizzato in discesa quindi il segnale in uscita sul secondario arriva a livelli compatibili ad un’ingresso phono, l’isolamento galvanico offerto dal trasformatore e il condensatore da 47nF in parallelo all’uscita garantiscono livelli di rumore sufficientemente bassi (circa 1mVPP) da permettere misure attendibili anche se la sorgente (ISDS alimentata dalla porta USB) risulta molto rumorosa (rumore bianco a circa 10mVPP).

Lo schema (clicca per ingrandire)

L’ingresso del circuito è formato dalla rete di resistenze e condensatori che formano il RIAA inverso, a questo ingresso si collega il segnale del generatore di funzioni e la prima sonda dell’analizzatore ISDS. Il secondo stadio è un’inseguitore di source realizzato con un JFET BF256 che ha il compito di abbassare l’impedenza di uscita del RIAA inverso e pilotare l’ingresso del successivo operazionale LM386 che ha il compito di pilotare il primario del trasformatore LT700, la rete formata da R9 e R10 è un negative feedback locale necessario per appiattire la risposta in frequenza dell’LT700 che risulta comunque già molto lineare (a livelli di segnale così deboli) fino a quasi 400khz. Per ovvie ragioni non potevo pescare il segnale di NFB sul secondario perchè avrei perso l’isolamento galvanico necessario a separare la massa del circuito da quella del preamplificatore phono sotto test, in tutti i modi il circuito di uscita resta lineare fino ai 20Hz richiesti.

Il tutto viene alimentato da una pila da 9volt per scongiurare problemi di giri di massa e rumori di vario tipo. Ho realizzato il circuito su un ritaglio di 1000 fori poi ho stampanto una scatolina per prototipi con la stampante 3D e l’ho inscatolato munendolo di connettori RCA, interruttore e led spia.

Qui di seguito il grafico di banda passante che mostra la curva di RIAA inversa dello strumentino e l’analisi di spettro con un THD inferiore allo 0,05%.

Continue reading...

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

FatMan iTube 252

Questo FatMan iTube 252 ha avuto un guasto con emissione di fumo.

Il guasto è stato causato da una scarica arcovoltaica tra la resistenza limitatrice della griglia schermo verso il pin della griglia controllo, per via di un montaggio troppo ravvicinato. Il guasto ha causato anche l’esplosione dell’elettrolitico di bypass della valvola coinvolta.

Ho sostituito tutte le resistenze di limitazione delle griglie schermo con resistenze dai pin sagomati apposta per rimanere distanziate dal PCB, e sostituito tutti i condensatori di bypass catodici con condensatori di alta qualità NOS. Ho sostituito anche tutto il SET di EL34 e le 2 6SN7 che risultavano esaurite.

Ho rilevato un pò di strumentali di questo amplificatore e credo di poter dire che è l’unico apparecchio visto fin’ora ad avere dei trasformatori veramente decenti.

Potenza massima: 25Watt RMS
Banda passante a 1Watt: 20Hz – 100khz -3dB
Banda passante a 25Watt: 20Hz – 42khz -3dB
Fattore di smorzamento DF: 6,66
Rout: 1,2ohm

Gli unici 2 nei dell’amplificatore sono di aver usato una polarizzazione selfbias nemmeno bilanciata e uno sfasatore cathodyna, all’ascolto è sicuramente molto meglio di tanta altra roba anche di marche prostigiose, conserva però qualche difetto tipico dello sfasatore cathodyna dovuto allo sbilanciamento a regime dinamico dello sfasatore che da un suono tipico che potrebbe risultare fastidioso per alcune persone, il DF è azzeccato e denota l’uso di un tasso di NFB nella giusta misura. Il selfbias indipendente per ogni valvola rende molto udibile la qualità del condensatore usato (e quello di fabbrica da 100uF è veramente misero e consiglio di sostituirlo con uno di capacità maggiore e di migliore qualità) e potrebbe portare a una presenza di DC nel trasformatore nel qual caso (molto probabile) che le valvole matchate non siano poi metchate tanto perfettamente, sopratutto dopo alcuni mesi di rodaggio.

Continue reading...

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.