Primaluna Prologue Two – Riparato e Rivalvolato

La storia di questo amplificatore è piuttosto travagliata, apparentemente ha subito un lungo tempo in un’ambiente umido, poi è stato venduto e ha funzionato per un pò fino al momento che ha emesso una fumata e ha smesso di funzionare. Quando l’ho aperto all’interno presentava evidenti ossidature e segni di corrosione, ruggine in diversi punti e croste marroni sopratutto sul PCB del servobias che si sono poi rilevate essere il solder usato in fabbrica e mai pulito da chi l’ha montato.

Ho iniziato smontando un pò di roba, molte viti erano marcite e ho faticato un pò a rimuoverle, successivamente ho ripassato tutto i filetti con un maschio per prepararli ad accogliere una nuova vite. Ho smontato, pulito e riverniciato le ghiere che reggevano i 2 condensatori di livellamento, e pulito i condensatori stessi…

Il guasto grosso è avvenuto per colpa del solder lasciato dalla fabbrica un pò dappertutto che ha corroso il rame dei sottili fili che collegavano lo scheda del servobias alle valvole finali, questi fili si sono staccati lasciando 2 valvole con la griglia flottante che ha poi fatto la malora generando scariche sulla scheda del servobias attraverso i fili che ancora erano collegati.

Inizialmente ho cercato di riparare il PCB che si presentava con incrostazioni biancastre attorno a tutte le saldature che invece di apparire color stagno erano di un grigio scuro, l’ho pulita con pray per elettronica e spazzolino poi ho cercato di ripassare tutte le saldature brutte e che apparivano “fredde” con parecchia difficoltà perchè non fondevano e dovevo sparare la temperatura della stazione a palla e quando fondevano buttavano fuori una resina marrone che faceva la schiuma e puzzava di urina (già capitato anni fà su un’altro apparecchio made in cina, non so che cosa usino come solder e penso di non volerlo sapere), l’aspirazione dello stagno andava a termine ma bisognava ripulire la crosta marrone che si formava, durante questo processo poi ho trovato diverse linee interrotte dalla corrosione, ci ho perso sopra un pomeriggio intero. Alla fine sono riuscito a metterla in funzione ma per quanto mi fossi sforzato questa funzionava male, regolava il bias a cavolo ogni valvola diversa dalle altre, non era stabile. Evidentemente c’erano ancora linee interrotte (probabilmente nei fori passanti) e/o dispersioni tra le piste e non era più recuperabile. Nell’impossibilità di reperire la scheda di ricambio originale mi sono messo di pazienza a tirarmi giù lo schema dalla scheda, e a recuperare quei pochi componenti che potevo salvare (zener, transistor per alta tensione e altre cose) e poi l’ho ricostruita sulla 1000 fori, mi sono concesso di usare una coppia di TL082 al posto del singolo TL084 (il TL084 contiene due TL082 in un solo chip in pratica) originario solo per comodità nel doverlo montare sulla 1000 fori, il risultato è stato questo (nella foto non avevo ancora ricollegato i driver alle finali):

Il nuovo servobias ha funzionato alla perfezione alla prima accensione, l’amplificatore ha ripreso a funzionare correttamente…

Vediamo ora un’altro Primaluna Prologue TWO, a questo avevano cambianto uno dei 4 zoccoli delle finali non so per quale motivo, ma lo zoccolo sostituito creava continui problemi di contatto con i pin della valvola causando scopiettii in altoparlante.

DSCN5451

Un’occhio attento potrà notare che questo zoccolo oltretutto è del tipo per montaggio su circuito stampato e non per cablaggio in aria, i pin del tipo per pcb non sono fatti per questo tipo di montaggio, col tempo e il calore era facile che qualche saldatura si rompesse causando il distaccamento di qualche filo e danni seri.

DSCN5452

Nelle foto qui sotto si vede che ho sostituito lo zoccolo con uno adatto al montaggio in aria e quasi identico all’originale (il mio ha i contatti placati oro, quelli dell’amplificatore no).

DSCN5453

DSCN5454

L’amplificatore aveva poi bisogno di un cambio delle finali, perchè montava 2 KT88 di un tipo e 2 di un tipo diverso. Faccio quindi un’appunto sulle valvole marchiate Primaluna: molte persone considerano questi amplificatori molto buoni (a riguardo parlano le strumentali e le analisi di spettro poco più sotto in questa pagina), e spendono un surplus di soldi per comprare valvole marchiate “primaluna”… Osservate questa foto…

DSCN5459

A sinistra una KT88 “Primaluna” che era montata sull’amplificatore, a destra una KT88 della Shuguang nuova. Non credete alle fesserie markettare che le loro valvole sono migliori o hanno qualcosa di diverso, le loro sono Shuguang “timbrate” col logo primaluna e vendute a prezzo maggiorato.

Veniamo alle strumentali misurate sull’apparecchio campione con tutte le valvole nuove:

Potenza: 30 Watt RMS
Banda passante @ 1watt : 15Hz~34khz -3db
Banda passante @ 25watt: meno di 10Hz~25khz -3db con -1db a 10khz
Smorzamento: non misurabile direttamente perchè alla sconnessione del carico il circuito prende ad oscillare vistosamente, ma dall’andamento della risposta in frequenza sul carico reattivo azzarderei a ipotizzare uno smorzamento decisamente basso.
Distorsione armonica THD a 1 watt: 0,3%
Distorsione armonica THD a 25 watt: inferiore all’1%
Distorsione armonica THD sotto al clipping: lasciamo perdere.

Le analisi di spettro, a 1 watt su carico resistivo:

A 25 watt sempre su resistivo:

Mentre sul carico reattivo su accentuano le armoniche dispari

Questo il grafico di banda passante a 1watt su carico resistivo

1 watt Su carico reattivo…

 

Il negative feedback c’è ma molto poco visto il risultato sul carico reattivo, si capisce anche perchè l’ingresso è molto sensibile, basta un segnale piuttosto basso per portarlo al clipping (perdonatemi non l’ho misurato precisamente), non ho visto distorsioni della sinusoide nella zona tra gli 8 a i 15khz, distorsioni che ci sarebbero dovute essere se avessero usato tanto NFB assieme a trasformatori con banda passante così modesta, ma fa strano che sia instabile in assenza di carico, anche se comunque capita appunto con trasformatori che hanno queste bande passanti.

Continue reading...

1 Responses to Primaluna Prologue Two – Riparato e Rivalvolato

  • Primaluna Prologue Two riparato a seguito di trasformatore di alimentazione in entrata andato. Lavoro non semplicissimo anche perchè il trasformatore originale recuperato era leggermente diverso da quello andato in corto pertanto la sostituzione ha comportato modifiche di non facile approccio. Ringrazio Stefano per la maestria e la bravura con la quale affronta casi complessi e difficili come il mio! Ora il mio Primaluna a ripreso a suonare come i vecchi tempi.

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

LX1240 – Modifiche e migliorie per renderlo realmente HiFi

Siccome ricevo ancora richieste da persone che si divertono a montare o imitare il vecchio KIT di nuova elettronica LX1240 (anche se non capisco dove trovino i PCB e i trasformatori per metterli assieme) vado scrivendo questo articolo per soddisfare la richieste. Come succede per l’LX1321 anche per l’LX1240 circolano su internet diversi sitarelli amatoriali che propongono modifiche abbastanza discutibili che non sono affatto HiFi (sebbene le propongano come tali) oppure sono semplici esperimenti di smanettamento, che prevendono adattamenti di valvole in maniera abbastanza rozza. In questo articolo prendo in esame il progetto di NE, che di per sè ha un disegno abbastanza normale, e propongo delle modifiche che possano renderlo un’apparecchio veramente HiFi, di alto livello e non solo uno scassone di citofono su cui fare esperimenti di montaggio casuale di pezzi. Ho quindi preso in esame le limitazioni del circuito stampato originale e ho deciso di fare modifiche che possano essere realizzate modificando solo i valori dei componenti, senza stravolgimenti troppo pesanti, e quindi potranno essere utilizzate come valvole finali le EL34 e compatibili (KT66 / KL77) e le KT88/6550, niente 2A3, niente 6L6 niente 300B o PL36 o altre cavolate che richiederebbero trasformatori troppo diversi e driveraggi differenti per essere attuale correttamente.

Inizio spiegando che il progetto originario di nuova elettronica era tirato al massimo risparmio (oltre ogni limite) a totale discapito della qualità dei trasformatori che hanno delle enormi limitazioni qualitative. Il trasformatore di alimentazione originario di nuova elettronica era talmente sottodimensionato che si narra arrivasse a fumare dopo un pò che era acceso, tantè che molte persone ne compravano 2 per alimentarci solo un canale, avendo ugualmente problemi di surriscaldamento! Di stessa qualità sono i trasformatori d’uscita, talmente piccoli che io in quelle dimensioni ho realizzato trasformatori d’uscita per cuffie con valvole del taglio delle 6J5 mentre loro ci hanno fatto lavorare sopra una EL34. Premesso quindi che spendere poco con cose a valvole non ha senso, meglio usare un TDA2002 che costa ancora meno e suona sicuramente meglio che un valvolare realizzato con trasformatori così, è quindi palese che la modifica prevede l’acquisto di un nuovo set di trasformatori. Ovviamente la cosa non è un problema per chi monterà il progetto da zero senza partire dalla base di un LX1240.

Veniamo quindi alla mia versione. Premetto che su internet circolano schemi dove la gente commuta da pentodo a triodo o a ultralineare così alla leggera, senza considerare che il valore della resistenza di polarizzazione sotto al catodo della finale andrebbe cambiato, così come il tasso di NFB. Come ho già spiegato in questo articolo l’ultralineare in single ended è assolutamente da evitare, mentre con la finale a triodo si richiederebbe maggiore spinta da parte del driver io quindi considero solamente il funzionamento a pentodo che è l’unico che possa rendere dare una prestazione ben bilanciata all’oggetto. I trasformatori d’uscita sono gli stessi usati in altri single ended di EL34 quindi ad alta banda passante e dal suono di altissimo livello, ho previsto l’uso di un diverso trasformatore per la KT88 rispetto la EL34.

Di particolare gaudio per i sostenitori del suono colorato questo progetto prevede un feedback ad anello che lascia fuori il primo stadio, ecco lo schema premium (clicca per ingrandire)

Ho corretto la polarizzazione della finale e anche la polarizzazione e sopratutto quella della ECC82, perchè nella versione di Nuova Elettronica era fatta funzionare a correnti troppo basse, ma vediamo le rette per capire (in verde la versione Nuova Elettronica, in rosso la polarizzazione nella mia versione).

Rette ecc82

Come capita spesso mi arrivano persone imbeccate dai soliti guru dei forum che sanno tutto senza provare le cose che lanciano critiche sulle scelte circuitali che faccio e nel caso specifico hanno criticato questo cambio di polarizzazione della ECC82 definendolo peggiorativo, dicendo che:

  • Avendo fatto lavorare la valvola con una corrente maggiore questa si consuma prima.
  • Che il punto di lavoro risulta meno lineare, cioè la valvola distorce di più, “lo dicono anche i datasheet!”
  • Che non serve niente fare uno stadio che esce con un’impedenza inferiore tanto le resistenze di carico sono di valori molto alti.
  • Che il tempo di salita (che si migliora facendo lavorare la valvola a correnti maggiori, ossia facendola uscire ad impedenza più bassa), del circuito è una cosa irrilevante.

Allora visto che io non mi limito solo ad usare un simulatore computerizzato per verificare le cose che dico ho assemblato un circuito su un pezzo di legno con una ECC82, l’ho alimentata e ho effettuato varie misure per paragonare come si comportava nelle 2 situazioni, quella di nuova elettronica e quella che ho deciso di usare io, facendo ora ben presente che IO al contrario di tanti altri non considero solo la distorsione armornica (THD) ma anche tutta un’altra serie di parametri per stabilire quale circuito vada meglio. Sottolineo poi che la velocità del circuito (tempo di salita) per me è un parametro importante che definisce quanto dettaglio un certo circuito può far “sentire”, a tal proposito potete andarvi a vedere le specifiche tecniche degli OTL Graaf dove questo parametro era sempre dichiarato, G.Mariani mi ha sempre detto di tenerlo in considerazione e di far lavorare le valvole con della corrente, nel caso di questa ECC82 il punto di lavoro da me impostato è a metà della dissipazione massima della valvola quindi è del tutto accettabile e non credo che ne pregiudichi la vita, una volta facevano lavorare le valvole un modo parsimonioso perchè non gli interessava raggiungere certi livelli di fedeltà (le stesse registrazioni negli anni 50 non è che fossero granchè) ma piuttosto non avendo a disposizione condensatori di grosso taglio e rettificatori capaci di correnti elevate lo facevano per non andare in contro ad altri problemi, erano bravi progettisti alla philips ma all’epoca certe cose gli interessavano ben poco, oggi invece dovrebbero interessare sopratutto a quelli che si trastullano con DAC da mille mila BIT… tanta definizione poi perdi tutto in un circuito di concezione così arcaica?!

Ma vediamo il confronto tra le 2 circuitazioni, iniziamo con il circuito di nuova elettronica:

Fase e banda passante NE

Analisi di spettro NE

Tempo di salita NE

Riassunto strumentali NE:

  • Banda passante: 20khz -1 dB
  • Andamento di fase: 6 gradi 20Hz/1khz e ulteriori 10gradi 8khz, oltre 25gradi a 20khz.
  • Distorsione armonica THD: 0,4089% con prenza di picchi sotto la fondamentale, instabilità probabilmente causata dal valore molto alto della resistenza di carico.
  • Tempo di salita: 14uS

Ora vediamo il circuito come l’ho realizzato io…

Fase e banda passante SB-LAB

Analisi di spettro SB-LAB

Tempo di salita SB-LAB

Riassunto strumentali SB-LAB:

  • Banda passante: 75khz -1 dB (molto migliore della vesione NE).
  • Andamento di fase: 7,5 gradi 20Hz/1khz e ulteriori 10 gradi a 20khz (molto migliore della versione NE che a 20khz aveva oltre 25gradi di rotazione).
  • Distorsione armonica THD: 0,4268% (peggiore rispetto NE ma solo dello 0,0179%, differenza di distorsione IRRILEVANTE) minore presenza di rumore sotto la fondamentale (migliore rispetto NE).
  • Tempo di salita: 8uS (contro i 14 di NE)

In definitiva questo “peggioramento della THD” paventato dal lettore di datasheet è sostanzialmente inudibile, mentre tutti gli altri parametri di banda passante, andamento di fase, velocità del circuito risultano molto migliori rispetto la versione del circuito di nuova elettronica. Aggiungo anche che le griglie delle valvole ancorate con una resistenza di valore inferiore (220k invece di 470k) sono più stabili e meno suscettibili dal captare rumori e ronzii, quindi il circuito di nuova elettronica è solo una concezione circuitale “old style” assolutamente da bocciare o al limite con un proprio carattere sonoro vintage, ma la mia versione non è assolutamente peggiorativa ma tutt’altro; è decisamente migliorativa sopratutto se si cerca un suono più moderno e brillante. Chi poi insista a dire che uno 0,01qualcosa% di THD in più sia così peggiorativo ignorando tutto il resto per me non merita considerazione, a questo riguardo consiglio la lettura di questo articolo.

Attenzione: Le modifiche di seguito riportate in questo articolo PREVEDONO l’utilizzo di trasformatori SB-LAB, attorno a queste il progetto di upgrade è stato sviluppato e collaudato. Se eseguite queste modifiche in maniera errata o non utilizzate trasformatori SB-LAB il risultato è ignoto e SB-LAB non si assume nessuna responsabilità per amplificatori che entrano in auto-oscillazione o si bruciano. Non possono essere utilizzati in nessun modo i trasformatori originali di nuova elettronica. Essendo un circuito a larga banda passante ed essendo gli stessi trasformatori a larga banda passante garantiscono si una resa sonora assolutamente HiEnd, ma il cablaggio richiede grande cura e verifiche onde evitare problemi, le masse sul telaio devono essere pulite e fornire contatto perfetto, deve essere rispettata la polarità di fase dei trasformatori per non innescare oscillazione attraverso la rete di NFB, il cablaggio dell’ingresso pulito, senza loop di massa e con cavo schermato di buona qualità, può essere utile accendere gli apparecchi gradualmente con il variac. Se avete acquistato i trasformatori per l’upgrade, in caso di problemi o dubbi rivolgetevi a SB-LAB che può fornirvi l’assistenza per risolverli.

Ho effettuato il montaggio partendo da un PCB originale ripulito dagli esperimenti di qualcuno che ci si era divertito…

Facendo riferimento alle nomenclature dei componenti che appaiono sopra il PCB ho proceduto a montare il tutto in questo modo:

Resistenza da 15K 1/4 o 1/2 watt nella sede di C1
Condensatore ceramico da 100pF nella sede di R1, avendo cura di ripiegare il terminare e chiudere la pista per far arrivare il segnale all’ingresso della ECC82
Resistenza da 1Mega 1/4 watt montata sotto tra ingresso e massa grattando via il solder dalla pista adiacente

vedi foto:

R4 = 560ohm 1/2w
R2/R3 = 12k 1w
R5 = 470ohm /12w
R6= 82ohm 1/2w
R8/R9 = 220k 1/4w
R7 = 1k8 3watt
C3 = 100uF 400v
C2 = 1uF 250/300v o maggiore, MKP
R11= 39ohm
C4/C5 = 330nF 250volt o maggiore, MKP
R12 = 220ohm 3watt (cortocircuitare la presa GS del circuito a +300v)
C8 va lasciato vuoto
C6 = 470uF 400volt
C7 = 470/1000 o anche 2200uF 25volt di buona qualità con in parallelo in polipropilene da minimo 220nF fino a 1uF
R10 deve essere da 120ohm se si usa la EL34 e da 180ohm se si usa la KT88, sempre 5 watt di dissipazione
Il trasformatore d’uscita è il mod. SE2K-EL34 per uso con la EL34 e il mod. SE2K5-2A3 se si usa la KT88

Sotto a C3 va montato lo zener da 200volt 1watt con il catodo rivolto verso il positivo, questo zener ho lo scopo di stabilizzare la tensione che alimenta il driver impedendo delle lievi oscillazioni a bassa frequenza che avvengono dopo picchi di segnale.

Va ovviamente eliminata l’induttanza doppia di NE e vanno cortocircuitate le 2 linee di alimentazione dei 2 canali come se fossero una sola, la separazione dei canali è irrilenvante essendo una classe A ed essendoci 2 condensatori da 470uF che finiscono di fatto in parallelo non possono avvenire fenomeni di diafonia.

Ecco il mio montaggio di collaudo su tavolaccio

Strumentali rilevate

Banda passante: 20Hz -0,2dB / 50khz -1db
Distorsione armonica THD @ 1 Watt RMS su carico resistivo: 0,966% (da contare il montaggio volante, quindi non schermato e i fili lunghi)
Potenza: rilevata con KT88 su trasformatore SE2K5-2A3 = 7,5Watt RMS
Smorzamento DF: 5,7

Grafico banda passante e fase su carico resistivo

Grafico banda passante e fase di carico reattivo

Analisi di spettro

Quadre a 100Hz – 1k – 10k su carico resistivo

Continue reading...

3 Responses to LX1240 – Modifiche e migliorie per renderlo realmente HiFi

  • Gentile Luigi, la invito a leggere l’articolo sul Merope pushpull 6L6GC/5881 triodo in classe A.
    Fu la mia esperienza di amplificatore DYI, non è tra i più complessi da realizzare. Le posso confermare che il risultato è eccellente.
    Saluti!

  • il progetto è dedicato a chi lo possiede già e magari lo tiene in cantina a prendere la polvere, se devi fare qualcosa partendo da zero non ha senso che fai questo progetto dovendo anche cercare una scatola di montaggio che è fuori produzione da 25 anni almeno. Se devi partire da zero ti conviene puntare un’altro dei miei progetti.

  • Buongiorno, ho trovato molto esaurienti ed esaustive le sue spiegazioni tanto che vorrei cimentarmi nella costruzione.
    Penso che il problema maggiore sia nel reperire il circuito stampato.
    A questo riguardo potrebbe darmi qualche indicazione?
    La ringrazio anticipatamente

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Generatore di segnale bilanciato fino a 180vpp di ampiezza – Invertitore di Fase

Mi è venuta questa idea ripensando a tutte le volte che volevo testare su tavolaccio qualche valvola finale un pò grossa, magari anche in pushpull… sempre a perdere tempo montando oltre allo stadio finale anche lo stadio driver complicandomi il lavoro inutilmente, o quando devo testare finali e pre hifi con ingressi bilanciati. I normali generatori di funzioni non hanno uscite con uno swing molto ampio e quindi non sono sufficienti a pilotare direttamente valvole finali, inoltre erogano solo segnali sbilanciati.

Per questo motivo ho progettato e costruito un circuito costituito da un’oscillatore sinusoidale a 1khz ed uno stadio ad amplificazione differenziale a stato solido seguiti da uno doppio SRRP a valvole per l’amplificazione in tensione, in modo da aver disponibile anche un’uscita bilanciata. La massa del circuito è scollegata dalla messa terra della presa elettrica in modo che possa essere usato per iniettare segnale anche dentro a radio d’epoca col telaio sotto rete, nella modalità indipendente. Sotto lo schema (clicca per ingrandire)

L’apparecchio è munito di un connettore jack anteriore che permette di collegargli il generatore di funzioni, quando un jack è connesso all’ingresso l’oscillatore interno a frequenza fissa e la regolazione del volume vengono escluse, la connessione del generatore di funzioni però fa perdere l’isolamento da rete, in quando la massa del generatore sarà sicuramente collegata a terra, ma questo poco importa in quanto col generatore di funzioni si lavora sopra apparecchi hifi che non hanno questi problemi.

Per la sezione oscillatore ho usato un normalissimo transistor BC337, il trimmer “LIN” va regolato affinchè inneschi l’oscillazione che, aiutandosi con un’oscilloscopio, va poi portata alla massima ampiezza indistorta (circa 6Vpp). Lo sfasatore è realizzato con un doppio opamp MC1458, impostato a guadagno unitario, il trimmer BAL serve a bilanciare l’ampiezza delle 2 fasi, sempre aiutandosi con l’oscilloscopio bisogna regolarlo finchè le 2 onde in uscita dal circuito a valvole sono perfettamente della stessa ampiezza, la regolazione va fatta tenendo il volume ragionevolmente sotto al massimo consentito in quanto verso il limite estremo la slinearità delle valvole potrebbe causare leggeri sbilanciamenti.

L’SRPP è formato da un doppio triodo a catodo comune 6J6 / ECC91, scelta per il guadagno e per le ridotte dimensioni e anche per riciclare il supporto semi assemblato di un vecchio progetto che era montato nel contenitore che ho utilizzato dove era presente uno zoccolo a 7 pin, comunque è ottima valvola per stadi diffenziali, nata espressamente per questo. Mentre la parte alta dell’SRPP è formato da una normale ECC82 / 12AU7.

La rete di resistenze attorno alle griglie della 6J6 funziona sia da ancoraggio per i condensatori d’uscita sia da rete di NFB locale, assolutamente necessaria per mantenere la massima linearità e abbassare il più possibile l’impedenza d’uscita dei segnali, queste resistenze vanno messe con tolleranze all’1% oppure selezionate col valore uguale.

L’ampiezza massima del segnale in uscita è di 180Vpp per ogni fase, 360 se si prendono solo  2 estremi. Qui sotto ci sono le misure che ho fatto sul segnale emesso dal circuito, considerando che non ho montato valvole di prima scelta ma roba tirata su dal cartone di quelle senza scatola mai testate dove c’è di tutto un pò e un opamp dal cassettino dove si ammucchia rumenta da 25anni il risultato non è male con una THD di 0,7% con un livello di uscita da 30Vpp, non mi interessava una perfezione estrema ma sicuramente con valvole selezionate e un opamp migliore si possono ottenere risultati stupefacenti.

Spettro 300Vpp

Il grafico di banda passante, sinceramente non mi soddisfa molto e penso la colpa sia dell’opamp, appena avrò tempo faccio un’upgrade e ripubblico i risultati…

Il comportamento con le onde triangolari e quadre è eccellente.

Foto del montaggio…

Continue reading...

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.